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Overview

Astrophysics will
» link astrophysical systems with astronomical observables

» cover many areas of physics and astrophysics (electrodynamics,
guantum mechanics, statistical mechanics, relativity...)

Textbooks
- Radiative Processes in Astrophysics (Rybicki & Lightman)

- MAZEle (HEE; 1=F & ASH)

 Astrophysics Processes (Hale Bradt)



Fundamentals of Radiative Transfer




Electromagnetic Radiation

Particle/wave duality

classically: electromagnetic waves

- speed of light: ¢ = 3 X 10%m s71

- wavelength and frequency: )\ — C/y

guantum mechanically: photons
» quanta: massless, spin-1 particles (boson)

T B =hw = he/A (h=6.625 x 10727 ergs 5)

» Einstein: E2 — (mv(32>2 -+ (pc)2
p=FE/c (because m, =0)



Radiative Transfer

* How is radiation affected as it propagates through intervening gas and
dust media to the observer?

» Observer

Source |
Intervening gas / dust



Simplication & Complexity

- Simplification:

- Astronomical objects are normally much larger than the wavelength of radiation they
emit.

- Diffraction can be neglected.
- Light rays travel to us along straight lines. dA
- Complexity: l /\

- At one point, photons can be traveling in several different directions.

- For instance, at the center of a star, photons are moving equally in all directions.

(However, radiation from a star seen by a distant observer is moving almost exactly
radially.)

- Full specification of radiation needs to say how much radiation is moving in each
direction at every point. Therefore, we are dealing with the five- or six-dimensional
problem. ([x, y, z] + [0, ¢] + [1])



Energy Flux

Definition

- Consider a small area dA, exposed to
radiation for a time d.

- Energy flux F is defined as the net energy

dE passing through the element of area in
all directions in the time interval so that

dEE = F X dA X dt

- Note that F' depends on the orientation of
the area element dA.

. Unit: erg cm—2 s~ !

dA

e

/




Inverse Square Law

+ Flux from an isotropic radiation source, i.e., a point source emitting equal
amounts of energy in all directions.

- Because of energy conservation, flux through two shells around the source must be
the same.

ArrsF(r) = 4mrs F(rs)

- Therefore, we obtain the inverse square law.

const.
F =

72



Specific Intensity or Surface Brightness

» Recall that flux is a measure of the energy carried by all rays passing
through a given area

- Intensity is the enerqgy carried along by individual rays.

dA k = direction of propagation

k

- Let dE,, be the amount of radiant energy which crosses the area dA,,
perpendicular to a direction K within solid angle d€2 about in a time interval dt with
photon frequency between v and v + dv.

- The monochromatic specific intensity Iy IS then defined by the equation.
dE, = I (k, X, )dA, dQdvdt

. Unit:erg s—! cm™ sr™! Hz™!

- From the view point of an observer, the specific intensity is called surface
brightness.
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Relation between the flux and the specific intensity

. Let’s consider a small area dA, with light rays
passing through it at all angles to the normal
vector n of the surface.

. For a ray centered about Kk, the area normal

toKis
dAy, = dA cos 0

- By the definition,

F dAdvdt = [Iy(k, X, 1)dA, dQdvdt

- Hence, net flux in the direction of n is given dA X
by integrating over all solid angles:
2% o7
F,= [ly cos 0d€2 = [ [ I, cos 0 sin 8d0dg
0 J0
[Note] flux = “sum of all ray vectors” which is then projected onto a normal vector

intensity = magnitude of a single ray vector



11

Net flux

Net flux in the direction n is obtained by integrating the
differential flux over all solid angle.

F,,:/dF,,:/chosé’dQ

- The net flux is zero, if the radiation is isotropic.

27T 73 7
F, = / / I, cos@sin0didy = 271, / cos 0 sin 6d6
0o Jo 0

=l [sim2 H]g =0
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Note

Moments of intensity

» Intensity : scalar (amplitude of the differential flux)
- differential flux : vector

« momentum flux (radiation pressure) : tensor

Intensity can be defined as per wavelength interval.

L/|dV‘ = I)\‘d)\| dv C Z
VL/ — )\I)\ dA A2 A

AN

Integrated intensity is defined as the intensity over all

frequencies.
]:/ [VdV:/ ])\d)\
0 O
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- In astrophysics, we plot the spectral energy distribution (SED) as vl versus v
or Al versus A.

Galaxy SEDs
da Cunha et al. (2008)
lo L) L) L) L) L} L A )

lll L] L) L] U""l

log (AL, / Ly)

1000

A/ pum
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Constancy of Intensity

* How does specific intensity changes along a ray in free space

- Suppose a bundle of rays and any two points along the rays and construct areas
dA, and dA, normal to the rays at these points.

- What are the energies carried by the rays passing through both areas?

energy passing through 1 energy passing through 2
dEl — ]1dA1dQldth dE2 — IQdAQdQQdth
< > < >
R R
dQl dQQ
L > >
a4 dA; a4 dA;

- Here, d(, is the solid angle subtended by dA, at the location 1 and
d€2, is the solid angle subtended by dA, at the location 2.
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. Radiative Transfer Equation in free space

R
A2, dA;
> A= e |
-~ Conservation of energy:
' Because energy is conserved,
< . :
d dA- dE, = dE> — 11 =15
> dQl — ﬁ
dAs

- Conclusion (the constancy of intensity): 11 = I

- the specific intensity remains the same as radiation propagates through free space.

- We receive the same specific intensity at the telescope as is emitted at the source.

- Imagine looking at a uniformly lit wall and walking toward it. As you get closer, a field-
of-view with fixed angular size will see a progressively smaller region of the wall, but
this is exactly balanced by the inverse square law describing the spreading of the
light rays from the wall.
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Inverse Square Law for a Uniformly Bright Sphere

Let’s calculate the flux at P from a sphere of uniform brightness B

27 0.
F:/Icosé’dQ:B/ d(b/ cos 0 sin 6d6
0 0

1
= 2B X 5 (1 — cos? HC) — wBsin® 0.

2
sin 0, = i > FF=mB <E>

A

Y

Therefore, there is no conflict between the constancy of intensity
and the inverse square law.

Note

. The flux at a surface of uniform brightness B is I' = zB (r = R).

. For stellar atmosphere, the astrophysical flux is defined by F/x .
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Luminosity

- To determine the energy per unit time, we integrate flux over area.

- Monochromatic luminosity: Considering a sphere centered on a source with radius
R, the monochromatic luminosity is

L, = R? / dOF,

= AT R*F, for an isotropic source
- The bolometric luminosity is

Lol = / L,dy = / Lyd)\ = 47 R? / F,dy

- Flux and Luminosity of an extended source

2
F:T('I(E) :Ié

r r2

— Iﬂsource

L 2
L = (472 F = (47r2) [Qepurec A=mR
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(Specific) Energy Density

Consider a bundle of rays passing through a volume element dV in
a direction £2.

Then, the energy density per unit solid angle is defined by

dE = u, (Q)dVdQdv

Since radiation travels at velocity c, Kdg
dV = dA(cdt)

the definition of the intensity

dE = [I/dAdtdeV Volume

dV = dA x dh dh = cdt
= c(dA)(dt)

u, (Q) = I,(Q) /c a4

Therefore,



Energy Density and Mean Intensity

Integrating over all solid angle, we obtain

1
Uy = /uV(Q)dQ = —/I,,dﬂ
C

Mean intensity is defined by

1
L, = — [ 1,dS)
J 4%/

Then, the energy density is

A
Uy, =

iy §
C

Total energy density is obtained by integrating over all

frequencies.
u = /quV: 4—7T J,dv
C
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Radiation pressure

Photons carry momentum as well as energy.

If they strike a surface they transfer momentum to it. The momentum
transfer per unit time represents a force on the surface, and the force
per unit area on the surface is a pressure.

Thus, photons can exert a pressure on the surface of its container.

The concept of pressure is valid within the gas even if there is no
physical surface.
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Momentum Flux: Radiation Pressure

Radiation pressure due to energy flux propagating
along direction K, within solid angle df) and with
frequency between (v, v + dv), being transported along n:

- momentum of a photon: p = E/c

Ap AE
-force: F=—=—
At cAt

- radiation pressure = force per unit area

AF, AFE A
1% 1 14
0, dQdy = — /€ cos 6
AA 1AA At «— AF, =1, AA L AtAS)
= — 1, cos® HdQdv AA, = AAcosb
c

The first cosine factor is due to the area
normal to K and the second one is due to
1 9 1 the projection of the differential flux vector

Py = — /] cos? 0d0) = —= T M2d,u to the normal vector n.
C c J_1

Integrating over solid angle,

47 1 _ . L.
Pv = %I’/ = guy for isotropic radiation field (L/ = Jy, uy = —JV>
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Radiative Transfer Equation in free space

Recall the constancy of intensity.

* the specific intensity remains the same as radiation propagates
through free space.

I = I

Radiative Transfer Equation in Free Space: If we measure the distance along a ray by
variable s, we can express the result equivalently in differential form:

ﬂ —0 radiative transfer equation in free space
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Radiative Transfer Equation in reality

* In reality, as a ray passes through matter, energy may be added, subtracted, or

scattered from it by emission, absorption, or scattering.

- The intensity will not in general remain constant.

- These interactions are described by the radiative transfer
equation.

scattering
loss: scattering &
ANANNNN emission absorption
ANNNNNN—

ANNANNANAS absorption gain: emission

A VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVE

I, : > I, +dI,

ds [J. P. Williams]
Introduction to the Interstellar Medium
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Emission

- If the radiation travels through a medium which is itself emitting radiation,

that will add to the energy:
dV = dA X ds

I, I, +dlI,

dA

<—— (s >

- Spontaneous “emission coefficient” or “emissivity” jy Is the amount of energy
emitted per unit time, per unit solid angle, per unit frequency, and per unit volume:

db = j7,dVdQdidv (5, : erg cm % s st HZ_I)

- In going a distance ds, a beam of cross section dA travels through a volume
dV = dAds. Thus the intensity added to the beam is by ds is

dI, = j,ds - dE = (d1))dAdQdtdy
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« Therefore, the equation of radiative transfer for pure emission becomes:

ds —d

- If we know what j is, we can integrate this equation to find the change in specific
Intensity as radiation propagates through the medium:

\)

I(s) = L(0) + [ j(s)ds’
0

- (angle integrated) emissivity €, = the energy emitted spontaneously
per unit frequency per unit time per unit mass. For isotropic emission,

9
dE = ¢, pdV dtdy —

47

- Then, we obtain j, = Z—p or /j,,dﬂ = €,
T
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Absorption

- If the radiation travels through a medium which absorbs radiation, the energy
in the beam will be reduced:

I, +dI,
(dI, < 0)

<—— (s >

- Let n denote the number density of absorbers (particles per unit volume).

- Assume that each absorber has a cross-sectional area of 6, (in units of cm?).

- number of absorbers = ndAds

. If a beam travels through ds, total area of absorbers is

number of absorbers X cross section = (n X dA X ds) X o,
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Fraction of radiation absorbed = fraction of area blocked:

dl ndAdso,

1

— = — no, ds dl
I dA Y — - =—al
ds
dl, = —no lds = —a,lds

- Absorption coefficientis defined as a, = no,, (units: cm™!), meaning the total
cross-sectional area per unit volume.

o, =no, [em Y]

— IO/{V

where p is the mass density and k, is called the mass absorption coefficient or
the opacity coefficient.

- If we include the effect of stimulated emission in the absorption coefficient, it may be
referred to as the attenuation coefficient. (as in Draine’s book)
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The Radiative Transfer Equation

Without scattering term, dl
— =4, —a,
ds

Including scattering term, we obtain a general integrodifferential equation.

Q-VI, = —a I, +j, +a? | ¢,(Q,Q),(Q)dY

° Scattering Coefficient Oésyca (Cm_l) extinction coefficient
. scattering phase function oyt = ol + o
IP /gby(ﬂ, Q')dQ = 1
« for isotropic scatterin 1
p g ¢V(Q’ ﬂ/) — 4_
-

Stimulated emission:

*  We consider “absorption” to include both “true absorption” and stimulated
emission, because both are proportional to the intensity of the incoming beam
(unlike spontaneous emission).
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Solution: Emission Only

For pure emission, «, =0

dly =4, — IL(s)=1,(s0) +/ 7u(s")ds’

ds 30

» The brightness increase is equal to the emission coefficient integrated

along the line of sight.

I, =73, R
if I,(0) =0 and j, = constant
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Solution: Absorption Only

- Pure absorption: j, =0

- Rearranging the previous equation, we obtain the equation of radiative transfer for
pure absorption:

dl,
ds wh

- The amount of reduced energy depends on how much radiation we already have.

- Integrate to find how radiation changes along path:

S d[ )
[ IU =— | a/sds’
o L Jo

[ln Iy]f) = — | a,(s)ds’
J0

1,(0) 1,(s)

L(s) = 1L(0)exp —J a, (s)ds’
0

« The brightness decreases along the ray by the exponential of the
absorption coefficient integrated along the line of sight.
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- If the absorption coefficient is a constant (example: a uniform density gas of
ionized hydrogen), then we obtain

L(s) =1(0)e %"

/LN

specific intensity initial intensity radiation exponentially
after distance s at s = 0. absorbed with distance

- Optical depth:

- Imagine radiation traveling into a cloud of absorbing gas, exponential defines a scale
over which radiation is attenuated.

S

When J a (s)ds" = 1, the intensity will be reduced to 1/e of its original value.
0
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We define the optical depth 7, as:

TU(S) = J ay(s’)ds’ or dTy = ade S IIJ(TI/) — ]V(O)e—fy
0)

A medium is said to be optically thick at a frequency v if the optical depth for a
typical path through the medium satisfies:

7, (s) > 1
The medium is optically thin if, instead:
7,(s) <1

An optically thin medium is one which a typical photon of frequency r can pass
through without being (significantly) absorbed.
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Mean Free Path

- From the exponential absorption law, the probability of a photon
absorbed between optical depths 7, and 7, + dz, is T PV —
v v v /_"/0 (1)d7, =1

dl,

dr,

—r
\_> © — probability density function for the
absorption at an optical depth 7v.

‘d[’/‘ — dr, & ‘dL/| X P(Tv)dTu — P(TV) —e

- The mean optical depth traveled is thus equal to unity:

<TV> — / TVP(Tu)dTy — / TVG_TVCZT,/ — 1
0 0

- The mean free path is defined as the average distance a photon can travel
through an absorbing material until it is absorbed. In a homogeneous medium,

the mean free path is determined by

1 1
) =aly =1 — fy= — =
Q, no,

- Alocal mean path at a point in an inhomogeneous material can be also defined.
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Source Function

Source function:

S, = 2%
Ay

- The radiative transfer equation can now be written

dl
—=-1+ L
a,ds a,
dl,
i L+,

- This is an alternative and sometimes more convenient way to write the
equation.
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Formal Solution

dl, - 1(0)
dr, T
I ) S
T, V Ty Ty T — 7/
(& d_TV —+ e I]/ — € SV < T—7
d :
g (€7 L) = ¢S, 0 v

Iv(t,) =1,(0)e ™ —I—/ e_(T”_Tfi)S,,(TL)dTL
0

[(0)e™"

S(T,)e —(7—1')

» The solution is easily interpreted as the sum of two terms:

- the initial intensity diminished by absorption
- the integrated source diminished by absorption.

« For a constant source function, the solution becomes

L/(Tz/) — IV(O)e_TV + Sy (1 — 6_7-1/)
=S5, +e v ([V<O) - Su)
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Relaxation

dl
— = Su — IV
dr,
“Relaxation”
dl,
- I, >5 = ~ < 0, then I, tends to decrease along the ray
Ty
dl, .
I, <S5, — - > (0, then I, tends to increase along the ray
Ty

- The source function is the quantity that the specific intensity
tries to approach, and does approach if given sufficient optical

depth.

As 7, > 00, I, =S,
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Radiation Force

. Radiation flux vector in direction n :

F,A = /Iyndﬂ

 the vector momentum per unit area per unit time per unit path length

absorbed by the medium is

1 F
F = _/aVFVdV < TLO'VdAdS—

C C

 This Is the force per unit volume imparted onto the medium by the

radiation field.

» The force per unit mass of material is given by

FAV ~ FAV F 1
f:m:pAV > f—;—z//ﬁlyFl/dV
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Thermal equilibrium

* In general, equilibrium means a state of balance.

- Thermal Equilibrium
- Thermal equilibrium refers to steady states of temperature, which defines the

average energy of material or photons.
. 3
(for ideal gas, Favg = §kBT)

In a state of (complete) thermodynamic equilibrium (TE), no net flows of matter or
of energy, no phase changes, and no unbalanced potentials (or driving forces), within

the system. In TE, matter and radiation are in equilibrium at the same
temperature T.

When the material is (locally) in thermodynamic equilibrium, and only the
radiation field is allowed to depart from its TE, we refer to the state of the system

as being in local thermodynamic equilibrium (LTE)

In other words, if the material is (locally) in thermodynamic equilibrium at a well-
defined temperature T, it is said to be in local thermodynamic equilibrium (LTE)

even if it is not in equilibrium with the radiation field.
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Blackbody

* Imagine a container bounded by opaque walls with a
very small hole.

Photons will be scattered and absorbed many times,
(and eventually trapped and completely absorbed in
the box). Under such conditions, the particles and photons
continually share their kinetic energies. In perfect thermal
equilibrium, the average particle kinetic energy will
equal to the average photon energy, and a unique
temperature T can be defined.

A blackbody is an idealized physical body that absorbs all
incident radiation regardless of frequency or angle of
incidence (i.e., perfect absorber). The above cavity can be
regarded to be a blackbody.

Radiation from a blackbody in thermal equilibrium is
called the blackbody radiation.

box 1

v,1
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Blackbody radiation is the universal function.

Now, consider another cavity (box 2), also at the
same temperature, but made of different material
or shape and connect two cavities with a filter
transparent only in the narrow frequency range

v and v + dv.

- In equilibrium at T, radiation should transfer no net
energy from one cavity to the other. Otherwise, one
cavity will cool down and the other heats up; this violates
the second law of thermodynamics.

- Therefore, the intensity or spectrum that passes through
the holes should be a universal function of T and should
be isotropic.

- The intensity and spectrum of the radiation emerging
from the hole should be independent of the wall
material (e.g., wood, copper, or concrete, etc) and any
absorbing material that may be inside the cavity.

- The universal function is called the Planck function B (7).

- This is the blackbody radiation.

I v,2

box 1

filter

box 2
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Kirchhoff’s Law In TE

In (full) thermodynamic equilibrium at temperature T, by
definition, we know that

dl

- =0 and I, =B/(T)
ds
We also note that
dl, .
= = avlz/ + 7,
ds

- Then, we can obtain the Kirchhoff's law for a system in TE:

Y — B(T), j, = a,B,(T)
Oy

- This is remarkable because it connects the properties j (T') and x (T)
of any kind of matter to the single universal spectrum B (7).
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Kirchhoff’s Law In TE

Consider an element of some thermally emitting material at
temperature 71 .

Put this into a blackbody enclosure at the same temperature.

Let the source function of the material be S, .

dl, itsS,>B, — [,>B8, - %: o,
dT :—Iy+Sy » 1fSI/<B1/ —> II/<B1/
S, =B,

But, the presence of the material cannot alter the radiation, since the
new configuration is also a blackbody enclosure at 1.

Kirchhoff’s Law: in TE, the ratio of the emission coefficient to the
absorption coefficient is a function of temperature and frequency only.

j, = a,B,(T) — Kirchhoff’s Law

Note : j, = B,(T) if «a, =1 (perfect absorber, i.e., blackbody)



43

Kirchhoff’s Law in LTE

Recall that Kirchhoff’s law was derived for a system in thermodynamic
equilibrium.

Kirchhoff’s law applies not only in TE but also in LTE:

Recall that B (T') is independent of the properties of the radiating /absorbing
material.

In contrast, both j, (7)) and o, (T') depend only on the materials in the cavity and
on the temperature of that material; they do not depend on the ambient radiation
field or its spectrum.

Therefore, the Kirchhoff’s law should be true even for the case of LTE.

In LTE, the ratio of the emission coefficient to the absorption coefficient is a
function of temperature and frequency only.

This generalized version of Kirchhoff’s law is an exceptionally valuable tool for
calculating the emission coefficient from the absorption coefficient or vice versa.
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Implications of Kirchhoff’s Law

- A good absorber is a good emitter, and a poor absorber is a poor emitter. (In
other words, a good reflector must be a poor absorber, and thus a poor emitter.)

j,=aB(T) — j increases as a, increases

- Itis not possible to thermally radiate more energy than a blackbody, at equilibrium.

J ‘dl” b
s _ v _ a0s
(a’l)emiss =j,ds = a”_ay ds < B/(T) because a,ds = 3 <1
- o . dl,
- The radiative transfer equation in LTE can be rewritten: — = -1, + B, (T)

Ty

 Remark:

- Blackbody radiation means I, = B (T'). An object for which the intensity is the Planck
function is emitting blackbody radiation.

- Thermal radiation is defined to be radiation emitted by “matter” in LTE. Thermal
radiation means S, = B,(T'). An object for which the source function is the Planck function is

emitting thermal radiation.

- Thermal radiation becomes blackbody radiation only for optically thick media.
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To see the difference between thermal and blackbody radiation,

Consider a slab of material with optical depth 7. that is producing thermal radiation.

If no light is falling on the back side of the slab, the intensity that is measured on the
front side of the slab is

If the slab is optical thick at frequency v (7., > 1), then

Il/ ~ 14
If the slab is optically thin (1, < 1), then
Il/ ~ TVBI/ < BV

This indicates that the radiation, although thermal, will not be blackbody.

Thermal radiation becomes blackbody radiation only for optical thick media.
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Application of Kirchhoff’'s Law: Dust Emission

. Consider a dusty cloud with a volume V
through which external radiation passes.
(1) The total absorbed energy should be

balanced by the energy emitted by dust !
grains. |

Incident radiation
JLfbsdy = JLfmdv / N
(2) The energy emitted at frequency v can /
be expressed in terms of the emission /
coefficient:

L™ =4xzVj:™

(8) Using Kirchhoff’s law (j™ = px*B (T)),  (4) Using this temperature, the
we can calculate the temperature of emission spectrum can be
dust: then obtained by

[Lﬁbsdv = 4ﬂpVJK3bSBU(T)dU L™ = 4zpVi®™B (T)
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« Spectral Energy
Distribution

- Blue spectrum is the
iInput stellar spectrum
from a typical spiral
galaxy:.

- Dust emission was
calculated using the
Kirchhoff’s law.

- This shows a typical
SED shape of
galaxies.

| : dust emission _
= Input spectrum (uniform medium) 3
3 dust entissio ALY _§
(clampy \.}A m) y N ]
10" 10° 10 10* 10
A [Uum]

Please please note that ®v or Rv is not the emissivity
(nor emission coefficient), as often wrongly referred to in
the literature of the external galaxies community.

Ky = /10)\_*3

Ky = HJOVB for dust absorption
in Far-IR wavelengths is referred to as the modified blackbody.

ix= koA PBA(T) (B~1-2)




Spectrum of Blackbody Radiation

- There is no perfect blackbody. Solar Radiation Spectrum

uv : Visible : Infrared —> Sun: G2
I

N
(3

- However, the cosmic microwave background
comes quite close; stars can sometimes be
usefully approximated as blackbodies.

- By the end of the 19th century, the blackbody
spectrum was fairly well known empirically,
from laboratory studies.

N

Sunlight at Top of the Atmosphere

-
(&)
L

5250°C Blackbody Spectrum

—
L

Radiation at Sea Level

o
(&)
A

Absorption Bands
H,0

Spectral Irradiance (W/m2/nm)

) In 1900’ Max PIaan’ USIng hIS Idea Of 0-250 500 750 1000 1250 1500 1750 2000 2250 2500

guantized energies, derived the blackbody Wavelength (nm)

S peCt rum. https://pages.uoregon.edu/imamura/321/122/lecture-3/stellar_spectra.html

- The frequency dependence of blackbody radiation is given by the Planck
function:

4 )
2hv3 /c? 2hc? /\°
Bl/ T — B T p—
I = ap st =1 & P = e ke — 1
\ _J

h=6.63x107%" erg s (Planck’s constant)
kg = 1.38 X 10-16 erg K~! (Boltzmann’s constant)
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Thermodynamics

» First Law of Thermodynamics: Energy is conserved and heat and

work are both forms of energy.
heat added in a system = change in internal energy + work done on surroundings

dQ) = dU +dW = dU + pdV (inexact differentials)
of of
. - df # ——dx + ==d
where Q is heat and U is internal energy. arric dy "’

Second Law of Thermodynamics: Heat always moves from hotter
objects to colder objects, unless energy is supplied to reverse the
direction of heat flow.

_ a4

dsS n

where S is entropy. The derivative of entropy is an exact differential.
See “Fundamentals of Statistical and Thermal Physics” (Federick Reif)
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Thermodynamics of Blackbody Radiation

dU dV 1 1 u 1
V du U 1 u
— 4T+ = e
Tde + TdV+ 3TdV
V du 4 u
Sl i A —
Tde +3Tdv

— 8_S —Kd_u and a_S _4_’U,
or ), TdT oV ) 3T

0?8 1 du 0% S du 4 du

ovor — TdT % orov ~ 312 T 3TdT

\
4

du 4u, du dT
— = — or — =4—
dT T U T
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Stefan-Boltzmann law:

Stenfan — Boltzmann law : w(T) = aT* « logu = 4logT + loga

T 4
u(T) = (3400 K) erg cm™”

total energy density: A A

u=— [ B,(T)dv = —B(T)

the integrated Planck function

B(T) = /BV(T)du Sy ey

47 T

emergent flux (another form of the Stefan-Boltzmann law)

F:/Fde:T('/B,/dV:TFB(T)
= oT"
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Entropy of Blackbody Radiation

Entropy:

4 4
dS = ¥4aT3dT + §T3dv — S = gaT3v

» Entropy density:

4
S:S/V:§T3

- The law of adiabatic expansion for blackbody radiation:

Tad X V_1/3

Dad X T;Ld o V43

Thus, we have the adiabatic index for blackbody radiation:

5 .
v = — for a monatomic gas

<~ pV7 = constant :
= for a diatomic gas

’)/:

QO | H~
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The Planck Spectrum (Quantum Mechanics)

How to calculate the Blackbody spectrum?
- Intensity spectrum is related to the energy density:

C
JV:_ v
47Tu

- Energy density = Number density of photon states
X Average energy of each state

(a) Number density of photon states = number of states
per solid angle per volume per frequency

(b) Average energy of each state = Boltzmann distribution
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The Planck Spectrum (Quantum Mechanics)

(1) Number density of photon state:

Consider a photon propagating in direction n inside a box with
dimensions L,,L,,L. inX,Y, z directions.

9 9
wave vector: k= Tﬂn _
C

If each dimension of the box is much longer than a wavelength,
the photon can be represented by standing wave in the box.

number of nodes in each direction: n, = ky L, /2w

number of node changes in a wave number interval (if n; > 1):

LAk,

An,
2T

number of states in 3D wave vector element Ak, Ak, Ak, = d°k

L,L,L.d> 3
AN = AnzAn,An, = 2 yL=d"F — 2Vd i

\<2w>3 (2m)?
two independent polarizations
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» the density of states (number of states per solid angle per
volume per frequency):

27)3 12 dudS)
Ph = K2dkde = 2T
C
IR dN 207
T Vavdo T 3

(2) Average energy of each state:

. Each state may contain n photons of energy hv. The energy of the
stateis £, = nhv .

. The probability of a state of energy £, is proportional to e PEn
where f = (kBT)_1 and kg is the Boltzmann’s constant. (from
statistical mechanics)

» Therefore, the average energy is:

oo_ E, _BE, 9 00 B
(E) = Zi&g S = ik (Ze BE”)

n=0 e n=0
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N2 e PEn = 500 (e = (1 — e )T

(B - hve B B hv
- 1—e P exp(hv/kpT) — 1

Average number of photons (occupation number):

1
n, = (F) [hv = exp(hw ko) — 1 > Bose — Einstein statistics

Specific Energy density:

un(Q) = py (B) = — 2V /¢

exp(hv/kgT) — 1

Planck Law:
2hv? /c?
exp(hv/kgT) — 1

2hc? / \°
exp(hc/AkgT) — 1

BI/: OI‘B)\:
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Stefan-Boltzmann constant & Riemann zeta function

n

Bose integral : In:/ dx * :/ dCCQZnZG_(i+1)w
0 =L Jo i=0

6_

= Z i + 1)+l /OO dyy"e™? (y = (i+1)x)
(n +

= DI'(n+1)
> * zidx
/ B,(T)dv = (2h/c*)(kgT/h)* /
0 o e'—1
2ksT? kg T* m#
2R3 (AT = c?h3 906
B 21tk
~ 15c2h3
20k
L0 = 1;(:2}?3 = 5.67 x 107° erg cm™ 2 deg™* 57!
870k
a = i = — 756 X 10_15 crg Cm_3 deg_4

15¢3h3
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Rayleigh-Jeans Law & Wien Law

Rayleigh-Jeans Law (low-energy limit)
2
hv < kT (v < 2 x 101°Hz(T/1K)) — IX(T) = %kBT

- Originally derived by assuming the classical equipartition of energy

<E> =2 X (1/2)]€BT u, = ps () = I, = uyc= ps (E) c

» ultraviolet catastrophe: if the equation is applied to all frequencies, the
total amount of energy would diverge.

/VZdV% 00

Wien Law (high-energy limit)

2h3 hy
W _
hv > kgl — I (T) =3 exp ( kBT>
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Homework (due date: 09/18)

[Q1] Absorption line and emission line spectra

- Temperature of the Solar photosphere is ~ 6000 K. Lots of spectral lines of
different elements are observed.

- Optical spectrum of stars is an absorption line spectrum - see dark
absorption lines superimposed on a bright continuum.

DEC 1658, MJ =1
(after Delbouille et 19

ﬁ["q ('WI ‘(T”V W 1‘ \ ﬂ o 0 4;.~|-’§|‘ l:.;r“ h r’n;
’I iH i ij L He: M o mig
| " i
| g ;; by W g
— B S
R
A M i
v !I i | f"l\e#:- 1R
st F ]i e
s L :1 :~.. ! .’"p,'“;:
T,

NG e

[T :,« r ':'p: A\ ] || | '
Absorption Jines
-0.0000 + f-j.“‘_?_. (
0 00 70 0
Wavelength [4]

Two strong absorption lines are Na | D lines
due to sodium.
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- However, emission nebulae typically show emission line spectira:
(Spectral lines are stronger than the continuum.)

Relative Intensity

Z|
g 3
T A
= @ =
s i T T
' g
B Z ' T
= {
- e
| : i | g
'P |‘ "J#‘»J .." l’ | n ')Y'I | 375.
kBT YR 5“(’%" A{fL 0
O SRR WA (e _ill |’ yu

wavelength (Angstroms)

Spectrum from an emission nebula

=€ a ! 'l . S T F—e—— AT,
4000 4500 S000 5500 6000 6500

Homework
- Explain why this difference
happens?
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Hint for homework

- Recall the solution for RT equation when the source function is constant.
I(z)=10)e"+S,(1—-e"%)

- Assume optically thin regions, 7, < 1 and show that the above equation becomes
1(D) ~ 1(0) + 7,(D)(S, - 1(0)) at7,=D

- See the following three figures, and explain why some objects show absorption line
spectra, but some show emission line spectra.

- Note that 7(ry; = 0) > T(7y = D) for the case of the stellar atmosphere.

Nebula Nebula Stellar Atmosphere
T, (D) < 1 T (D ol T,(D) < 1 j
I V( ) <1 \%
1,©0)=0 E [,0)<S, :ij I,(0)>S, \/
Lo n=0 5D . to0 et
IV T IV(O)
_____________________ S
_,A [ oo T Sv
| ———— e | N(
0 v N 0 | V( ) 0 I
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[Q2] Eddington Luminosity

(1) Thomson scattering is an elastic scattering of a photon by a
charged particle (i.e., electrons) in the non-relativistic regime.

(2) Read the following website:
http://www-ppl.s.chiba-u.jp/lecture/radiation/node2.html

Explain in your own language what the Eddington Luminosity is.


http://www-ppl.s.chiba-u.jp/lecture/radiation/node2.html

