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• Let us consider a plane EM wave propagating in the +z direction, and examine the 
electric vector at z = 0.

The real part of E is

• If the x-vibration and the y-vibration are in the same phase ( ), the electric field 
vector oscillates on a straight line. In this case, light is linearly polarized.

• When the x-vibration and the y-vibration are not in phase, the electric field vector moves 
around in an ellipse.

ϕ1 = ϕ2

Polarization
Elliptical Polarization

in the general case

Ex = E1 cos(ωt− φ1) Ey = E2 cos(ωt− φ2)

intuitively, blends linear and circular features:

→ elliptical polarization
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ellipse orientation fixed by E1 − E2 difference
ellipse eccentricity and helicity fixed by φ1 − φ2 difference

in coordinates (x′, y′) rotated to align with principal axes

E′
x = E0 cos β cos(ωt) E′

y = E0 sin β sin(ωt)

for some β ∈ [−π/2,+π/2]
Q: evolution if β > 0?
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E = x̂E1 cos(!t� �1) + ŷE2 cos(!t� �2)
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Fig. 33-2. Superposition of x-vibrations and y -vibrations with equal
amplitudes but various relative phases. The components Ex and Ey are
expressed in both real and complex notations.

electric field vector are only a mathematical convenience and have no physical
significance.

Now for some terminology. Light is linearly polarized (sometimes called
plane polarized) when the electric field oscillates on a straight line; Fig. 33-1
illustrates linear polarization. When the end of the electric field vector travels in
an ellipse, the light is elliptically polarized. When the end of the electric field
vector travels around a circle, we have circular polarization. If the end of the
electric vector, when we look at it as the light comes straight toward us, goes
around in a counterclockwise direction, we call it right-hand circular polarization.
Figure 33-2(g) illustrates right-hand circular polarization, and Fig. 33-2(c) shows

33-3

Fig. 33-2 in Vol 1 [The Feynman lectures on physics]



Stokes Parameters (for monochromatic waves)
• A convenient way to represent these quantities is by means of the Stokes parameters for 

monochromatic waves.

Then, we have

Pure elliptical polarization is determined solely by three parameters  .

• Meaning of the Stokes parameters:

I : total energy flux or intensity
V : circularity parameter (          : right-handed,           : left-handed)
Q, U : orientation of the ellipse (or line) relative to the x-axis

(E0, �, �)

I2 = Q2 + U2 + V 2

for a monochromatic wave
(pure polarization)

V > 0 V < 0

Q = U = 0, V 6= 0

Q⇥ U 6= 0, V = 0

Q⇥ U 6= 0, V 6= 0

: linear polarization
: circular polarization
: elliptical polarization
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The IAU definition of coordinate system
Hamaker & Bregman (1996, A&AS)
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Differences in Definitions of Stokes vector
• BH: Bohren & Huffman  (Absorption and 

Scattering of Light by Small Particles) 

• C: Chandrasekhar (Radiative Transfer)

IBH = E∥E*∥ + E⊥E*⊥
QBH = E∥E*∥ − E⊥E*⊥
UBH = E∥E*⊥ + E⊥E*∥

VBH = i (E∥E*⊥ − E⊥E*∥ )
VC = − i (E∥E*⊥ − E⊥E*∥ )

IIAU = EnE*n + EeE*e
QIAU = EnE*n − EeE*e
UIAU = EnE*e + EeE*n
VIAU = i (EnE*e − EeE*n )

⊥ (r)

∥ (l)

north

east

• IAU recommendation 

• IEEE standard

En = E⊥
Ee = E∥

∴

IIAU

QIAU
UIAU
VIAU

=

IBH
−QBH
UBH

−VBH

=

IC

−QC
UC
VC
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Note that I and U remain unchanged, regardless of the definitions.



Conventions adopted by various authors

+Q -Q

+V

   IAU (1974)

   Martin (1974)

   Tsang et al. (1985)

   Trippe (2014)

   Chandrasekhar (1950)

   van de Hulst (1957)

   Hovenier & van der Mee (1983)

   Fischer et al. (1994)

   Code & Whitney (1995)

   Mishchenko et al. (1999)

   Gordon et al. (2001)

   Lucas (2003)

   Gorski et al. (2005)

-V    Shurcliff (1962)

   Bianchi et al. (1996)

   Bohren & Huffman (1998)

   Rybicki & Lightman (1979)

   Mishchenko et al. (2002)

Peest et al. (2017, A&A, 601, A92) + ⍺
(Typo: +/-U should read as +/-Q)
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Stokes Parameters (for quasi-monochromatic waves)
• In practice we never see a single monochromatic component but rather a superposition of 

many components (frequencies), each with its own polarization. In general, EM waves 
vary over time and with wavenumber.  Let’s consider EM wave with slowly varying 
amplitudes and phases:

• How slow is slow? Quasi-monochromatic wave:

Assumption: over a time interval   , the amplitudes and phases do not 
change significantly. By the uncertainty relation, its frequency spread    about the 
central value  can be estimated as   .

For this reason, the wave slowly varying over a time interval    is  called 
quasi-monochromatic, and the time    is called the coherence time.

• The Stokes parameters for quasi-monochromatic waves are defined by the average 
over time, to be consistent with the definition for monochromatic waves:

Δt > Δtc ≡ 1/ω
Δω

ω Δω/ω ≈ Δtc /Δt < 1
Δt > Δtc = 1/ω

Δtc

E1(t) = E1(t)ei�1(t) E2(t) = E2(t)ei�2(t)
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Here,  denotes the time average.⟨⟩
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• With the Schwartz inequality

we can easily verify that

The equality holds only for a completely polarized wave.

• Most sources of EM radiation contain a large number of atoms or molecules that emit 
light. The orientation of the electric fields produced by these emitters may not be 
correlated, in which case the light is said to be unpolarized. For completely unpolarized 
wave, where the phase difference  between    and    maintain no permanent 
relation and where there is no preferred orientation in the x-y plane, so that                    .

ϕ1 − ϕ2 E1 E2

hE1E
⇤
1 i hE2E

⇤
2 i � hE1E

⇤
2 i hE2E

⇤
1 i

I2 � Q2 + U2 + V 2

⌦
E2
1

↵
=

⌦
E2
2

↵

Q = U = V = 0
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Superposition of independent waves
• Radiation will generally originate from a variety of regions different polarizations and 

different wave phases. Consider therefore a beam consisting of a mixture of many 
independent waves:

Because the relative phases are random, only the terms k =  l survive the averaging. 
Therefore, the Stokes parameters have additive properties:

• By the superposition principle, an arbitrary wave can be decomposed of a completely 
unpolarized wave and a completely polarized wave.

• Proof of the inequality:

E1 =
X

k

E(k)
1 E2 =

X

k

E(k)
2 where k = 1, 2, 3, · · · .

⌦
EiE

⇤
j

↵
=

X

k

X

l

D
E(k)

i E(l)⇤
j

E
=

X

k

D
E(k)

i E(k)⇤
j

E
(i, j = 1 or 2)

I =
X

k

I(k), Q =
X

k

Q(k), U =
X

k

U (k), V =
X

k

V (k)

0

BB@

I
Q
U
V

1

CCA =

0

BB@

I �
p

Q2 + U2 + V 2

0
0
0

1

CCA+

0

BB@

p
Q2 + U2 + V 2

Q
U
V

1

CCA

I2 = (Ipol + Iunpol)
2 � I2pol = Q2 + U2 + V 2
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Degree of Polarization
• Degree of polarization for a partially polarized wave = ratio of the intensity of the 

polarized part to the total intensity

• In the case of partial linear polarization (V = 0), the measurement consists of rotating a 
linear polarization filter until the maximum values of intensity are found. The maximum 
value will occur when the filter is aligned with the plane of polarization, and the 
minimum value will occur along in the direction perpendicular to it.

Total value of the unpolarized intensity is shared equally between any two perpendicular 
directions. Therefore,

This equation will underestimate the true degree of polarization if circular or elliptical 
polarization is present.

⇧ ⌘ Ipol
I

=

p
Q2 + U2 + V 2

I

Imax =
1

2
Iunpol + Ipol

Imin =
1

2
Iunpol

Iunpol = I �
p

Q2 + U2

Ipol =
p

Q2 + U2

where
) ⇧linear =

Imax � Imin

Imax + Imin

Imax = 1
2 (Iunpol + Icir) + Ilin

Imin = 1
2 (Iunpol + Icir)

! Imax � Imin

Imax + Imin
=

Ilin
I

<
Ipol
I

=
Ilin + Icir

Iunpol + Ilin + Icir
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Stokes Parameters + Unpolarized Light
• A convenient way to solve these equations is by means of the Stokes parameters for 

monochromatic waves.

• Unpolarized Light:

If the light is not absolutely monochromatic, or if the x- and y-phases are not kept 
perfectly together, so that the electric vector first vibrates in one direction, then in 
another, the polarization is constantly changing.

Remember that one atom emits during 10-8 sec, and if one atom emits a certain 
polarization, and then another atom emits light with a different polarization, the 
polarizations will change every 10-8 sec. If the polarization change more rapidly than we 
can detect it, then all the light unpolarized, because all the effects of the polarization 
average out.

• Light is unpolarized if we are unable to find out whether the light is polarized or not.

I2 = Q2 + U2 + V 2

for a monochromatic wave
(pure polarization)
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Astrophysical Examples: Lyman Alpha Blobs

LABs are one of the biggest objects in the Universe: gigantic clouds of hydrogen. They may 
evolve into the present-day groups and clusters of galaxies.

Possible Origins of the Ly-alpha Nebulosity

• Cooling of the accreting gas that is heated by galactic outflows during powerful 
starbursts or by the dissipation of gravitational energy as gas falls toward galaxies 

• Photoionization by luminous AGNs, young stars, and/or the intergalactic UV 
background 

• Resonance scattering of Lyα photons produced by star forming galaxies and/or 
AGNs hosted within the nebulae

13Lyman Alpha Blobs
Lyman Alpha BlobsLyman Alpha Blobs

uniformly in r, using the fact that the velocity along the streams is
roughly constant (Supplementary Information, sections 5 and 6).
This is convolved with the halo mass function23, n(Mv), to give

n ( _MM)~

ð?

0

P( _MM jMv)n(Mv) dMv

The desired cumulative abundance, n(. _MM), obtained by integration

over the inflow rates from _MM to infinity, is shown at z5 2.2 in Fig. 4.

Assuming that the SFR equals _MM , the curve referring to _MM lies safely
above the observed values,marked by the symbols, indicating that the

gas input rate is sufficient to explain the SFR. However, _MM and the
SFR are allowed to differ only by a factor of ,2, confirming our
suspicion that the SFR must closely follow the gas input rate. The
simulated SFR indeed traces the accretion rate to within a factor of
two, but, given that our disks are poorly resolved, we focus here on
the accretion as the more robustly simulated quantity. Because at
z< 2.2 the star-forming galaxies constitute only a fraction of the
observed ,1011M[ galaxies24,25, the requirement for a SFR almost

as great as _MM , based on Fig. 4, becomes even stronger.
By analysing the clumpiness of the gas streams, using the sharp

peaks of inflow in the _MM(r) profiles, we address the role of mergers
versus smooth flows. We evaluate each clump mass by integrating
Mclump~

Ð
( _MM(r)=vr (r)) dr across the peak, and estimate amass ratio

for the expected merger as m5Mclump/fbMv, ignoring further mass
loss in the clump on its way in and deviations of the galaxy baryon
fraction from fb. We use ‘merger’ to describe any major or minor
merger with m$ 0.1, as distinct from ‘smooth’ flows, which include
‘mini-minor’ mergers with m, 0.1. We find that about one-third of
the mass is flowing in as mergers and the rest as smoother flows.
However, the central galaxy is fed by a clump with m$ 0.1 less than
10% of the time; that is, the duty cycle for mergers is g= 0.1. A
similar estimate is obtained using EPS merger rates7 and starburst
durations of,50Myr at z5 2.5 from simulations26 (Supplementary
Information, section 5).

From the difference between the two curves of Fig. 4, we learn that
only one-quarter of the galaxies with a given _MM are to be seen during a
merger. The fact that the SFGs lie well above the merger curve even if
the SFR is , _MM indicates that in most of them the star formation is
driven by smooth streams. Thus, ‘SFG’ could also stand for ‘stream-
fed galaxy’. This may explain why these galaxies maintain an

 

 

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

−1.0

−0.5

0.0

0.5

1.0

1.5

 

 

−150 –100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

−30

−25

−20

−15

−10

−5

0

5

Distance (kpc) Distance (kpc)

D
is

ta
nc

e 
(k

pc
)

log (K/Kvir) dM/d

Entropy Flux per
solid angle

a b Ω

Figure 1 | Entropy, velocity and inward flux of cold streams penetrating hot
haloes. a, b, Maps referring to a thin slice through one of our fiducial
galaxies withMv5 1012M[ at z5 2.5. The arrows describe the velocity field,
scaled such that the distance between the tails is 260 km s21. The circlemarks
the halo virial radius, Rv. The entropy, logK5 log(T/r2/3), in units of the
virial quantities, highlights (in red) the high-entropymedium filling the halo
out to the virial shock outside Rv. It exhibits (in blue) three radial, low-
entropy streams that penetrate the inner disk, seen edge-on. The radial flux
per solid angle is _mm5 r2rvr, in solarmasses per year per square radian, where
r is the gas density and vr the radial velocity. It demonstrates that more than
90% of the inflow is channelled through the streams (blue), at a rate that

remains roughly the same at all radii. This rate is several times higher than
the spherical average outside the virial sphere, _mmvir < 8M[ yr21 rad22,
according to equation (1). The opening angle of a typical stream at Rv is
20u230u, so the streams cover a total angular area of,0.4 rad2, namely a few
per cent of the sphere. When viewed from a given direction, the column
density of cold gas below 105 K is above 1020 cm22 for 25% of the area within
the virial radius. Although the pictures show the inner disk, the disk width is
not resolved, so associated phenomena such as shocks, star formation and
feedback are treated in an approximate way only (see density maps and
additional cases in Supplementary Figs 3–5). Kvir, virial entropy.

Figure 2 | Streams in three dimensions. The map shows radial flux for the
galaxy of Fig. 1 in a box of side length 320 kpc. The colours refer to inflow rate
per solid angle of point-like tracers at the centres of cubic-grid cells. The
dotted circle marks the halo virial radius. The appearance of three fairly
radial streams seems to be generic in massive haloes at high redshift, and is a
feature of the cosmic web that deserves an explanation. Two of the streams
show gas clumps of mass on the order of one-tenth that of the central galaxy,
but most of the stream mass is smoother (Supplementary Fig. 6). The
>1010M[ clumps, which involve about one-third of the incomingmass, are
also gas rich—in the current simulation only 30% of their baryons turn into
stars before they merge with the central galaxy.

LETTERS NATURE |Vol 457 |22 January 2009

452
 Macmillan Publishers Limited. All rights reserved©2009

cold gas stream
Dekel et al. (2009)



Polarization in LABs

In-situ production of Lyα
➡ no or weak Lyα polarization

Resonant scattering: production of Lyα within a central source and scattering by 
neutral hydrogen
➡ concentric Lyα line polarization pattern
➡ polarization degree increases outwards

• The detection of polarized radiation is inconsistent with the in situ production of Lyα photons.

14 Polarization of LAB



Astrophysical Applications of Polarization by Scattering
• Detection of a concentric pattern of polarization vectors in an extended region indicates that the 

light comes via scattering from a central point source.

• Left map shows the IR intensity map at 3.8 um of the Becklin-Neugebauer/Kleinmann-Low 
region of Orion. It is not easy to identify which bright spots correspond to locations of possible 
protostars.

• However, the polarization map singles out only two positions of intrinsic luminosity: IRc2 (now 
known to be an intense protostellar wind) and BN (suspected to be a relatively high-mass star)

• All the other bright spots (IRc3 through 7) correspond to IR reflection nebulae.
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Radiation from Moving Charges 1



Mathematics: Note on the Dirac delta function.
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dx0 =
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(dg/dx0)

where xj are roots of the equation y = g(x) = 0

Z
f(x)�(x� x0)dx = f(x0) if x0 is not a function of x.
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A single moving charge: Potentials
• Recall the retarded potentials:

• Consider a particle of charge q that moves along a trajectory  . Its velocity is 
then  .  The charge and current densities are given by

The -function has the property of localizing the charge and current. Let us calculate the 
retarded potentials due to this charge and current density. Using the property of the 
-function, the potentials become

This is now an integral over the single variable .

r = r0(t)
u(t) = ·r0(t)

δ
δ

t′ 
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�(r, t) =

Z
d3r0

Z
dt0

⇢(r0, t0)

|r� r0| �(t
0 � t+ |r� r0|/c)

A(r, t) =
1

c

Z
d3r0

Z
dt0

j(r0, t0)

|r� r0|�(t
0 � t+ |r� r0|/c)
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• We now introduce the notations:

We then have

These equation can be simplified further. Let us change variables:

19

R(t0) ⌘ r� r0(t
0) ! R(t0) = |r� r0(t

0)|

t00 = t0 � t+R(t0)/c ! dt00 =


1 +

1

c
Ṙ(t0)

�
dt0

R2(t0) = R(t0) ·R(t0)

2R(t0)Ṙ(t0) = �2R(t0) · u(t0)  Ṙ(t0) = �u(t0)

Ṙ(t0) = �R(t0)

R(t0)
· u(t0)

(1)

(2)

(3)

(4)

(Here,  is a constant.)t



A single moving charge: The Lienard-Wiechart Potential
Finally, we obtain

Now the integration over the -function can be performed by setting  or 
.

These potentials are called the Lienard-Wiechart potentials.

δ t′ ′ = 0
t′ = tret ≡ t − R(tret)/c

20
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These potentials differ from those of static electromagnetic theory in two ways:

• Beaming effect:

• First, there is the factor  .

• This factor  becomes very important at velocities close to the speed of light, where it tends 
to concentrate the potentials into a narrow cone about the particle velocity. It is related to 
the beaming effect found in the Lorentz transformation of photon direction or propagation.

• Retardation makes it possible for a particle to radiate:

• The second difference is that the quantities are all to be evaluated at the retarded time . 
The major consequence of retardation is that it makes it possible for a particle to radiate.

• The potentials roughly decrease as    so that differentiation to find the fields would give 
a    decrease if this differentiation acted solely on the    factor.

• In addition to this, the implicit dependence of the retarded time on a position gives  
behavior in the fields. We will see that this allows radiation energy to flow to infinite 
distances.

κ(tret) = 1 − n(tret) ⋅ β(tret)

tret

1/r
1/r2 1/r

1/r
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• The differentiation of the potentials gives the electromagnetic field. The calculation is 
straightforward but lengthy (see 14.1 of Classical Electrodynamics, Jackson).

• Note that E and B are always perpendicular, and  . However, E is not in general 
perpendicular to .

|E | = |B |
n

A single moving charge: Electromagnetic Fields
22

B = r⇥A

E = �r�� 1

c

@A

@t

where u ⌘ ṙ0(tret)

� ⌘ u(tret)

c
=

ṙ0(tret)

c

�̇ ⌘ u̇(tret)

c
=

r̈0(tret)

c
R ⌘ r� r0(tret)

n ⌘ R

R
=

r� r0(tret)

|r� r0(tret)|
 ⌘ 1� n · �

velocity field acceleration field

Here, [ ] denotes the quantities 
calculated at the retarded position 

 and time .r(tret) tret

• The electric field appears as composed of two terms:

(1) The first, the velocity field, falls off as  and is just 
the generalization of the Coulomb law to moving particles.

✦ For  this becomes precisely Coulomb’s law.

✦ When the particle moves with constant velocity it is 
only this term that contributes to the fields.

(2) The second term, the acceleration field, falls off as , 
is proportional to the particle’s acceleration and is 
perpendicular to .

✦ This electric field, together with the corresponding 
magnetic field, constitutes the radiation field:

1/R2

u ≪ c

1/R

n



• The first term depends only on position and velocity.

• A remarkable fact is that the “velocity” electric 
field always points along the line toward the 
“current” position of the particle, expected when 

 = constant.

The displacement of the photon from the retarded 
point  (point at  ) to the field point  during 
the light travel time =  .

In the same time, the particle undergoes a 
displacement  .

The displacement between the field point and the 
current position of the particle is given by 

 which is the direction of the 
velocity field.

Note that, if the velocity is not a constant, the true 
displacement of the particle .

u = u(tret)

r0(tret) tret r
nc(t − tret)

βc(t − tret)

(n − β)c(t − tret)

≠ βc(t − tret)

“Velocity” Field
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�̇ n

(r, t)

Geometry for calculation of the radiation 
field at a point  in spacetime.(r, t)



• The second term (1) falls off as 1/R, (2) is proportional to the particle’s acceleration, and (3) is 
perpendicular to  .

• How an acceleration can give rise to a transverse field that decreases as : Consider a particle, which 
originally moved with a constant velocity along the x-axis and stopped at x = 0 at time t = 0. At time t (> 
0), the field outside radius ct is radial and points to the position (x = ut) where the particle would have 
been if there had been no deceleration, since no information of the deceleration has yet propagated. On the 
other hand, the field inside radius ct is “informed” and is radially directed to the true position (x = 0) of 
the particle.

n

1/R

“Acceleration” (or “radiation”) Field
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The fields at x > ct were made when t < 0, 
while those at x < ct were made when t > 0. 
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the field point from the retarded point is ncf, where i= t -  tret is the light 
travel time. In the same time the particle undergoes a displacement Ipci. 
The displacement between the field point and the current position is thus 
(n -Ip)ci, which is seen to be the direction of the velocity field in Eq. (3.9a). 

The second term, the acceleration field, falls off as 1/ R, is proportional 
to the particle’s acceleration and is perpendicular to n. This electric field, 
along with the corresponding magnetic field, constitutes the radiation field: 

(3. IOa) 

= [ x Erad]. (3.1 Ob) 

Note that E, B and n form a right-hand triad of mutually perpendicular 
vectors, and that IEradl = lBradI. These properties are consistent with the 
radiation solutions of the source-free Maxwell equations. 

Figure 3.2 demonstrates geometrically how an acceleration can give rise 
to a transverse field that decreases as 1 / R, rather than the 1 / R decrease 
of a nonaccelerated charge. The particle originally moved with constant 
velocity along the x-Exis and stopped at x=O at time t = O .  At t= 1 the 
field outside of a radius c is radial and points to the position where the 
particle would have been had there been no deceleration, since no infor- 
mation of the latter has yet propagated to this distance. On the other hand, 
the field inside radius c is “informed” and is radially directed to the true 
position of the particle. There is only one way these two’ fields can be 

4 n  
Erad(r, t ,  = - [ - x { (n-8) x b } ] .  

K ~ R  

x = o  x = l  

Figure 3.2 Gmphical akmonstmtion of the l / R  accelemtion field Charged 
parti& mouing at uni~orm oelociry in psirive x direction is stopped at x = 0 and 
t -0 .  

x = ct

z

x

        

      

r > ct

       x = 0



These two fields must be connected to be consistent with Gauss’s law and flux conservation.
- The transition zone between them will propagate outward.
- The electric field in the transition (shell) zone is transverse.
- The radial thickness of the shell would be the light travel distance during the time interval over which the 

deceleration occurs, and thus is constant.
- However, the radius of the shell (or ring) increases as R.
- Since the total number of flux lines (in xy-plane) must be conserved, the strength of the field varies as 1/R.
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A single moving charge: Radiation Power*
• Power per unit frequency per unit solid angle of the radiation field of a single particle

Note: the expression in the brackets is evaluated at the retarded time  .

Now, changing variables from  to  in the integral.

t′ = t − R(t′ )/c
t t′ = t − R(t′ )/c
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Recall:



We are only interested in the electric field measured at a far distance. Thus, we consider the case 
where .

(1)

                                
Here, we use the following relation. We also note that  is now independent of  in our 
approximation.

(2)                                                                     .   Here, again  is independent of .

(3)  We note that

Then we obtain

r0 ≪ r = r

n t′ 

n t′ 
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We can integrate the above equation by parts to obtain an expression without  . We first note the 
following relation (which is proved in the next slide).

With the rule of integration by parts                                         , we obtain

·β
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This formula will be used later.

This term vanishes under the 
assumption of a finite wave train.

dW

d!d⌦
=

q2!2

4⇡2c

����
Z

n⇥ (n⇥ �) exp


i!

✓
t0 � n · r0(t0)

c

◆�
dt0

����
2

<latexit sha1_base64="d6nbgBmAoBbQ7OjUcK8WH/H7TMA="></latexit>



• Proof of the relation:

note the vector identity:
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Radiation from Nonrelativistic Particles
• Using the above formulae we can discuss many radiation processes. The previous 

formulae is fully relativistic. However, for the moment, we will discuss nonrelativistic 
particles:

• Order of magnitude comparison of the two fields:

If we focus on a particular Fourier component of frequency  or the particle has a 
characteristic frequency of oscillation  , then  , and the above equation 
becomes:

For field points inside the “near zone”,   , the velocity field is stronger than the 
radiation field by a factor  .

For field points sufficiently far in the “far zone”,   , the radiation 
field dominates and increases its domination linearly with . In astronomy, we are 
only interested in the “far zone”. Therefore, let’s consider only the radiation field.

ν
ν ∼ 1/T ·u = uν

R ≲ λ
c/u = 1/β

R ≫ λ(c/u) = λ/β
R
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� =
u

c
⌧ 1

Erad ⇡ q

c

�̇

3R
, Evel ⇡

q

3R2
! Erad

Evel
⇡ Ru̇

c2

Erad

Evel
⇠ Ru⌫

c2
=

u

c

R

�



Larmor’s Formula
• When , the EM fields can be simplified to

• As shown in the figure,  is in the plane 
defined by  and .

Note that  and  are perpendicular and 
, where  is the angle 

between  and .

Therefore, the magnitudes of  and  are

β ≪ 1

Erad
n ·u

n n × ·u
n × ·u = ·u sin Θ Θ

n ·u
Erad Brad
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n⇥ (n⇥ u̇) = n(n · u̇)� u̇

{n⇥ (n⇥ u̇)}2 = (n · u̇)2 + (u̇)2 � 2(n · u̇)2

= u̇2 cos2 ⇥+ u̇2 � 2u̇2 cos2 ⇥

= u̇2(1� cos2 ⇥)

= u̇2 sin2 ⇥

) |Erad| = |Brad| =
qu̇

Rc2
sin⇥

The Erad field is in the plane of .(n, ·u)

Brad

Erad

n

⇥

O

plane of  and n ·u

·u

Also, note that



• The Poynting vector is in direction of n and has a 
magnitude.

This is an outward flow of energy (per unit time and 
per unit area), along the direction .

• Radiation patter: The energy emitted per unit time 
into solid angle  about  can be obtained by 
multiplying the Poynting vector by .

n

dΩ n
R2
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S =
c

4⇡
E⇥B =

c

4⇡
E2

radn

S =
c

4⇡

q2u̇2

R2c4
sin2 ⇥ ⌘ dW

dtdA
(erg s�1 cm�2)

dW

dtd⌦
= R2 dW

dtdA
= R2S

=
q2u̇2

4⇡c3
sin2 ⇥

dP

d⌦
=

q2u̇2

4⇡c3
sin2 ⇥
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As before, we find 

sin’ 0, dP d2 -=- 
dQ 4nc3 

P=,. 2d2 
3c 

(3.23a) 

(3.23b) 

This is called the dipole approximation and is a generalization of the 
formulas [Eqs. (3.18) and (3.19)] for a single nonrelativistic particle. The 
instantaneous polarization of E lies in the plane of d and n (see Fig. 3.5). 

As an application of the preceding analysis, let us consider the spectrum 
of radiation in the dipole approximation. For simplicity we assume that d 
always lies in a single direction. Then from Eq. (3.22a), we have 

sin 0 
c2R, 

E ( t )  = a( t)- , (3.24) 

where E ( t )  and d(t)  are the magnitudes of E(t) and d(t) ,  respectively. The 

Figure 3.5 Geometry and emission pattern for dipole radiation. 



• Total power emitted into all angles:

The emission from a single accelerated charge has the following properties:

1. The Power emitted is proportional to the square of the charge and the square of the 
acceleration.

2. We have the characteristic dipole pattern   : no radiation is emitted along the 
direction of acceleration, and the maximum is emitted perpendicular to acceleration. (see 
the figure in the previous slide)

3. The instantaneous direction of    is determined by    and n. If the particle accelerates 
along a line, the radiation will be 100% linearly polarized in the plane of    and n.

sin2 Θ

Erad
·u

·u
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P =
dW

dt
=

Z
d⌦

q2u̇2

4⇡c3
sin2 ⇥ =

q2u̇2

2c3

Z 1

�1
(1� µ2)dµ

P =
2q2u̇2

3c3

This is the Larmor’s Formula for emission 
from a single accelerated charge q.

dP

d⌦
=

q2u̇2

4⇡c3
sin2 ⇥

Brad

Erad

n

⇥

O

plane of  and n ·u

·u
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Dipole Approximation (the radiation from many particles)
• Consider many particles with positions  , velocities   , and charges  . The 

radiation field at large distances can be found by adding together the  from each particle.

• However, the radiation field equations refer to conditions at retarded time, and the retarded times 
will differ for each particle. Therefore, we must keep track of the phase relations between the 
particles.

There are situations in which it is possible to ignore this difficulty:

If   (light-travel-time), the differences in retarded time across the source are 
negligible. 

Note that    can represent the time scale over which significant changes in the radiation field, 
and this in turn determines typical characteristic frequency of the emitted radiation. This 
condition is equivalent to the condition for the characteristic frequency (or characteristic 
wavelength) :

In other words, the differences in retarded times can be ignored when the system size is much 
smaller than the characteristic wavelength.

ri ui qi (i = 1,2,3,⋯, N )
Erad

τ ≫ L /c

τ

34

Let L = typical size of the system
          = typical time scale for variations within the system⌧

⌫ ⇡ 1

⌧
⌧ c

L
or � =

c

⌫
� L



• We may also characterize  as the time a particle takes to change its motion substantially.

Let   be a characteristic scale of the particle’s orbit and u be a typical velocity, then .  
The above condition   then imply 

But since  , the condition for dipole approximation is simply equivalent to the 
nonrelativistic condition:

With the above conditions met we can use the nonrelativistic form of the radiation fields:

• Let  be the distance from some point in the system to the field point. Then,   
as  . Finally, we have

where the electric dipole moment is defined as

Note that the right-hand side of the above equations must still be evaluated at a retarded time, 
but using any point within the region, say, the position used to define . 

τ
ℓ τ ∼ ℓ/u

τ ≫ L /c u /c = ℓ/(τc) ≪ ℓ/L
ℓ < L

u ≪ c

R0 Ri = R0 + ℓi ≈ R0
R0 ≫ ℓi

R0
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Erad =
X

i

qi
c2

n⇥ (n⇥ u̇i)

Ri



• As before, for a single particle, we find the generalized formulas 
for the radiation patter and the total power, which are called the 
dipole approximation:

Note that the instantaneous polarization of  lines in the plane 
of    and n.

• Spectrum of radiation in the dipole approximation:

For simplicity we assume that  always lies in a single direction. 
Then, the magnitude of the electric field is given by

Fourier transform of  is defined as

Then, 

E··d

d

d(t)
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dP

d⌦
=

d̈2

4⇡c3
sin2 ⇥, P =

2d̈2

3c3
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This is called the dipole approximation and is a generalization of the 
formulas [Eqs. (3.18) and (3.19)] for a single nonrelativistic particle. The 
instantaneous polarization of E lies in the plane of d and n (see Fig. 3.5). 

As an application of the preceding analysis, let us consider the spectrum 
of radiation in the dipole approximation. For simplicity we assume that d 
always lies in a single direction. Then from Eq. (3.22a), we have 

sin 0 
c2R, 

E ( t )  = a( t)- , (3.24) 

where E ( t )  and d(t)  are the magnitudes of E(t) and d(t) ,  respectively. The 

Figure 3.5 Geometry and emission pattern for dipole radiation. 

where  is the magnitude of the 
dipole moment.

d(t)



• The energy per unit solid angle per frequency range in the dipole approximation is given 
by

The total energy per frequency range is

• The above formulas describe an interesting property of dipole radiation, namely, that the 
spectrum of the emitted radiation is related directly to the frequencies of oscillation of the 
dipole moment. However, this property is not true for particles with relativistic velocities.

• It is also worthwhile to note the dependence of  in the power spectrum.ω4 ∝ λ−4
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Homeworks (due date: 10/12)
[Q5]
(1) Read the following document about the Schwartz inequality.

https://mathworld.wolfram.com/SchwarzsInequality.html

(2) Using the above Schwartz inequality, show that

from the definition:
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hE1E
⇤
1 i hE2E

⇤
2 i � hE1E

⇤
2 i hE2E

⇤
1 iSchwartz inequality:

https://mathworld.wolfram.com/SchwarzsInequality.html

