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Polarization

* Letus consider a plane EM wave propagating in the +z direction, and examine the
electric vector at z = 0.

The real part of E 1s Y.

E = X& cos(wt — ¢1) + yE5 cos(wt — o)

Here, 51, 82, §b1, qbg are real.

o If the x-vibration and the y-vibration are in the same phase (¢, = ¢,), the electric field
vector oscillates on a straight line. In this case, light 1s linearly polarized.

 When the x-vibration and the y-vibration are not in phase, the electric field vector moves
around in an ellipse.
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Fig. 33-2 in Vol 1 [The Feynman lectures on physics]



Stokes Parameters (for monochromatic waves)

e A convenient way to represent these quantities i1s by means of the Stokes parameters for
monochromatic waves.

I = FE\E] + EsE;
Q = E1E] — ESES
U=F\E;+ EsE7
V =i (E1E; — EsEY)

=&l + &5
= £7 — &5 = E2 cos 23 cos 2

> 72 2 2 2
= 281E cos (1 — ¢2) = E; cos 23 sin 2y F=Q"+U"+V

— 28,Esin (¢ — do) = —E2sin 2 for a monochro.mat.lc wave
(pure polarization)

Then, we have

V U
Eo = VI, sin28 = 7 tan 2y = @

Pure elliptical polarization is determined solely by three parameters (£o; 5, X).

® Meaning of the Stokes parameters:

I : total energy flux or intensity

V. circularity parameter (V > 0 : right-handed, V < 0 : left-handed)
Q, U : orientation of the ellipse (or line) relative to the x-axis

(QxU#0,V =0 :linear polarization
Q =
@ xU#0,V#0 : elliptical polarization

U =0,V # 0 : circular polarization
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The IAU definition of coordinate system
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Hamaker & Bregman (1996, A&AS)

[ = Ipo + Igpe

Q) = Ipo — Igpo
U = l450 — I1350

Note that the phase is
assumed to be e ™",

V should be multiplied by -1
if the phase of e'®’ is adopted.
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Differences in Definitions of Stokes vector

BH: Bohren & Huffman (Absorption and
Scattering of Light by Small Particles)

C: Chandrasekhar (Radiative Transfer)
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Note that I and U remain unchanged, regardless of the definitions.



Conventions adopted by various authors

Peest et al. (2017, A&A, 601,A92) + A
(Typo: +/-U should read as +/-Q)

Chandrasekhar (1950)
van de Hulst (1957)
Hovenier & van der Mee (1983)
Fischer et al. (1994)

Code & Whitney (1995)
Mishchenko et al. (1999)
Gordon et al. (2001)

Lucas (2003)

Gorski et al. (2005)

IAU (1974)

Martin (1974)
Tsang et al. (1985)
Trippe (2014)

Bohren & Huffman (1998)
Rybicki & Lightman (1979)
Mishchenko et al. (2002)

Shurcliff (1962)
Bianchi et al. (1996)




Stokes Parameters (for quasi-monochromatic waves)

e In practice we never see a single monochromatic component but rather a superposition of
many components (frequencies), each with its own polarization. In general, EM waves
vary over time and with wavenumber. Let’s consider EM wave with slowly varying
amplitudes and phases:

Eq(t) = & (t)ei*r )

e How slow is slow? Quasi-monochromatic wave:

Eo(t) = E(t)ei®2 )

Assumption: over a time interval Af > Af. = 1/w, the amplitudes and phases do not
change significantly. By the uncertainty relation, its frequency spread Aw about the
central value @ can be estimated as Aw/w ~ At./Af < 1.

For this reason, the wave slowly varying over a time interval Af > Af. = 1/w is called
quasi-monochromatic, and the time Az, is called the coherence time.

The Stokes parameters for quasi-monochromatic waves are defined by the average

over time, to be consistent with the definition for monochromatic waves:

= (&1 + &)

= (&1 - &)

= 2(E1E5 cos (1 — P2))
—2(&1&ysin (o1 — )

~N

Here, () denotes the time average.
/




e With the Schwartz inequality (E1EY) (ExE3) > (E1E3) (EREY)

we can easily verify that

[122Q2+U2—|—V2]

The equality holds only for a completely polarized wave.

* Most sources of EM radiation contain a large number of atoms or molecules that emit
light. The orientation of the electric fields produced by these emitters may not be
correlated, in which case the light is said to be unpolarized. For completely unpolarized
wave, where the phase difference ¢; — ¢, between E, and E, maintain no permanent
relation and where there is no preferred orientation in the x-y plane, so that (£7) = (£5).



Superposition of independent waves

e Radiation will generally originate from a variety of regions different polarizations and
different wave phases. Consider therefore a beam consisting of a mixture of many
independent waves:

:ZEyC) Ey :ZEék) where £k =1,2.3,---

* k [)x* k k) ..
(E:E?) ZZ< <)E§>>:Z<E§)E§>> (i, =1 or 2)
k

Because the relative phases are random, only the terms k = [ survive the averaging.
Therefore, the Stokes parameters have additive properties:

[I;ﬂk), Q:%:Q(k)7 U:;Uw, V;mmj

e By the superposition principle, an arbitrary wave can be decomposed of a completely
unpolarized wave and a completely polarized wave.

I I—\/Q2—|—U2—|—V2 \/Q2+U2+V2
Q | _ 0 N Q
U 0 U
4 0 4

* Proof of the inequality: | 12 = (I, + Lunpol)® > 12, = Q> + U + V2
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Degree of Polarization

* Degree of polarization for a partially polarized wave = ratio of the intensity of the

polarized part to the total intensity

[H _ Lo Q*+U? +V2J

1 1

In the case of partial linear polarization (V = 0), the measurement consists of rotating a
linear polarization filter until the maximum values of intensity are found. The maximum
value will occur when the filter is aligned with the plane of polarization, and the
minimum value will occur along in the direction perpendicular to it.

Total value of the unpolarized intensity 1s shared equally between any two perpendicular
directions. Therefore,

1
Imax = §[unpol + Ipol where Iunpol =1 — \/Q2 + U*? N B Tox — ITmin
Ipol — \/Q2 + U? . tinear Imax + Imin

]min — 5 Iunpol

This equation will underestimate the true degree of polarization if circular or elliptical
polarization 1s present.

_ 1 . .
Imax = 3 (Tunpol + Leir) + Jiin . Imax — Imin  Tin < ool Din + Leir
Imax + Imin B I I B ]unpol + Ilin + Icir

]min — %(Iunpol + Icir)
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Stokes Parameters + Unpolarized Light

* A convenient way to solve these equations is by means of the Stokes parameters for

monochromatic waves.

[ = E\E + By EL
Q = E\EF — By E}
U=F\F, +EFE]
V =i (B Ef — EyE)

e Unpolarized Light:

——> " =Q°+ U+ V?
for a monochromatic wave
(pure polarization)

If the light is not absolutely monochromatic, or if the x- and y-phases are not kept
perfectly together, so that the electric vector first vibrates in one direction, then in
another, the polarization is constantly changing.

Remember that one atom emits during 10-8 sec, and if one atom emits a certain
polarization, and then another atom emits light with a different polarization, the

polarizations will change every 10-8 sec. If the polarization change more rapidly than we

can detect it, then all the light unpolarized, because all the effects of the polarization

average out.

* Light 1s unpolarized if we are unable to find out whether the light 1s polarized or not.
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Astrophysical Examples: Lyman Alpha Blobs

Ly« gas (CGM) _ Z=3.1 "l

X
L AN

25” ~ 200kpc L : ;
SSA22-LABA photo-ionization resonant scattering

(Matsuda+04; Subaru) cold gas stream by stars & AGN (scattering by dust
Dekel et al. (2009) (H Il region in M33) in Egg Nebula)

L ABs are one of the biggest objects in the Universe: gigantic clouds of hydrogen. They may
evolve into the present-day groups and clusters of galaxies.

Possible Origins of the Ly-alpha Nebulosity

Cooling of the accreting gas that is heated by galactic outflows during powerful
starbursts or by the dissipation of gravitational energy as gas falls toward galaxies

Photoionization by luminous AGNSs, young stars, and/or the intergalactic UV
background

Resonance scattering of Lya photons produced by star forming galaxies and/or
AGNs hosted within the nebulae
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Polarization in LABs

lll]]TITlll[flltuw

s cloud

Central source

(I.
!

Photon scattered
towards observer

1[1111 lllllllllllll'

SSA22-LAB1
(Hayes et al. 2011)

(R. Bower 2010)
In-situ production of Lyo.

= no or weak Lya polarization

Resonant scattering: production of Lya within a central source and scattering by
neutral hydrogen

= concentric Lya line polarization pattern

= polarization degree increases outwards

The detection of polarized radiation is inconsistent with the in situ production of Lya photons.



Astrophysical Applications of Polarization by Scattering

e Detection of a concentric pattern of polarization vectors in an extended region indicates that the
light comes via scattering from a central point source.

Werner et al. (1983, ApJL, 265, L13)
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e Left map shows the IR intensity map at 3.8 um of the Becklin-Neugebauer/Kleinmann-Low
region of Orion. It is not easy to 1dentify which bright spots correspond to locations of possible
protostars.

 However, the polarization map singles out only two positions of intrinsic luminosity: IRc2 (now
known to be an intense protostellar wind) and BN (suspected to be a relatively high-mass star)

e All the other bright spots (IRc3 through 7) correspond to IR reflection nebulae.



Radiation from Moving Charges 1
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Mathematics: Note on the Dirac delta function.

O(r—rg) =06(x —x0)d(y — y0)d(2 — 20)

/f(az)c?(:c — x9)dx = f(xg) if zg is not a function of .

))dx = /f « y=g()
/ dg/d:l? dy = (dg/dx")dx’
dg/d:l:‘w (dg/dx’")

where x; are roots of the equation y = g(z) =0



A single moving charge: Potentials

e Recall the retarded potentials:

3 J
/d ’/dt’r_r,| (t' —t+|r—1r'|/c)

» Consider a particle of charge g that moves along a trajectory r = ry(?). Its velocity is
then u(?) = ry(r). The charge and current densities are given by

p(r,t) = qo(r —ro(t)),  j(r,t) = qu(#)d(r —ro(t))

The o-function has the property of localizing the charge and current. Let us calculate the
retarded potentials due to this charge and current density. Using the property of the o
-function, the potentials become

(1.8) = [ 0~ e+ e r(®)]/0

A(r,t)_q/ dtu(? ) 6t —t+|r—ro(t)|/c)

v —ro(t)]

This is now an integral over the single variable ¢’
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e We now introduce the notations:

We then have dt’
¢ I‘, t) T /

These equation can be simplified further. Let us change variables:

(1) t"'=t'—t+ R({t')/c — dt"' = [1 + %R(t’)] dt’ (Here, ¢ is a constant.)
2) R*(t) =R(t") -R(t)
2R(YR() = —2R(t) -u(t’) « R() = —u(?)
R(t') = _2((;'; u(t)
3)  RE)=-n() ul) chere () = BE) o _ U
at’ = [1—n(t') - B dt re ) = Ry MM PE

4)  dt" =k({)dt where k(t') =1 —n(t") - B(¢

N—"
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A single moving charge: The Lienard-Wiechart Potential

Finally, we obtain

dt” 1/
00,0) = 0 [ —sm ()

A(r,t) =gq / ;Z,/)B]éé?)é(t”)

Now the integration over the é-function can be performed by setting " = O or
'=t=1t—R(.)/c.

r et

or,t) = ——
i(tret) R (tret) Liénard — Wiechart potentials
A1) = — Blret) Elo|Lt2- B3| 2E)

ck(tret) R (tret) (French-German)

These potentials are called the Lienard-Wiechart potentials.
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K(tret) R(tret) iénar iechart potentials

qB(tret) (2|0|L=-B[5|2E)
= (broo) R(toor) (French-German)

These potentials differ from those of static electromagnetic theory in two ways:

 Beaming effect:

First, there is the factor x(t..) = 1 — n(z,,) - f(t..0)-

This factor becomes very important at velocities close to the speed of light, where it tends
to concentrate the potentials into a narrow cone about the particle velocity. It 1s related to
the beaming effect found in the Lorentz transformation of photon direction or propagation.

e Retardation makes it possible for a particle to radiate:

The second difference 1s that the quantities are all to be evaluated at the retarded time ¢.,.
The major consequence of retardation is that it makes it possible for a particle to radiate.

The potentials roughly decrease as 1/r so that differentiation to find the fields would give
a 1/r* decrease if this differentiation acted solely on the 1/r factor.

In addition to this, the implicit dependence of the retarded time on a position gives 1/r
behavior in the fields. We will see that this allows radiation energy to flow to infinite
distances.
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A single moving charge: Electromagnetic Fields

The differentiation of the potentials gives the electromagnetic field. The calculation 1s
straightforward but lengthy (see 14.1 of Classical Electrodynamics, Jackson).

Note that E and B are always perpendicular,and E =

perpendicular to n.

velocity field
_ _yg_ 104 (n—B)(1 - 5%
E=-V¢ c Ot ——> E(r,t):q[ <3 R2
B=VxA

B(r,t) = n x E(r,?)]

ret

The electric field appears as composed of two terms:

(1) The first, the velocity field, falls off as 1/R? and is just
the generalization of the Coulomb law to moving particles.

+ For u < ¢ this becomes precisely Coulomb’s law.

+ When the particle moves with constant velocity it is
only this term that contributes to the fields.

(2) The second term, the acceleration field, falls off as 1/R,
is proportional to the particle’s acceleration and i1s
perpendicular to n.

4+ This electric field, together with the corresponding
magnetic field, constitutes the radiation field:

B . However, E is not in general

acceleration field

RS

Here, [ | denotes the quantities
calculated at the retarded position
r(f..) and time 7.

where u = 1o(tret)

B — U—<tret> _ I.'O<tret>
C C

B — 1ol(tret) _ fO(tret>
C C

R =r —ro(tret)

n= E L r — r0<tret)

R |r—rg(tret)]
k=1—n-03
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“Velocity” Field

e The first term depends only on position and velocity.

(n—B)(1 - 5°)

Evel(r7 t)

|

k3 R2

A remarkable fact is that the *‘velocity” electric
field always points along the line toward the

‘“current” position of the particle, expected when

u = u(¢,,) = constant.

D P(r,?)
X<2
\)/
| Bamn=o o B o (n— )
ret 4 3;”
R
tret ¢
u (t tret)
— /BC (t tret)

The displacement of the photon from the retarded
point ry(Z...) (point at 7.,) to the field point r during
the light travel time = nc(f — ¢..,).

In the same time, the particle undergoes a

displacement Bc(f — t..,).

The displacement between the field point and the

current position of the particle is

given by

(n — B)c(t — t,,) which is the direction of the

velocity field.

Note that, if the velocity is not a constant, the true
displacement of the particle # fc(t —t..,)-

particle path

R 4
’ /Bc(t T tret)

ro (tret)
position at tyet

Geometry for calculation of the radiation
field at a point (r, f) in spacetime.
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“Acceleration” (or “radiation”) Field

The second term (1) falls off as 1/R, (2) is proportional to the particle’s acceleration, and (3) is
perpendicular to n.

n

E,.q(r,t) = 2 [ﬁ « {(n—ﬁ) « BH

C
Brad(r7t> — [Il X Erad]

et

ret

How an acceleration can give rise to a transverse field that decreases as 1/R: Consider a particle, which
originally moved with a constant velocity along the x-axis and stopped at x = 0 at time # = 0. At time ¢ (>
0), the field outside radius ct is radial and points to the position (x = ut) where the particle would have
been if there had been no deceleration, since no information of the deceleration has yet propagated. On the
other hand, the field inside radius ct is “informed” and is radially directed to the true position (x = 0) of
the particle.

r>ct

r\ The fields at x > ¢t were made when 7 < 0,
\ while those at x < ¢t were made when ¢ > 0.

N\
N

‘ r <ct

S

O O
u(t <0) >0 x = r=ut T =2ct
u(t>0)=0



These two fields must be connected to be consistent with Gauss’s law and flux conservation.

- The transition zone between them will propagate outward.

- The electric field in the transition (shell) zone 1s transverse.

- The radial thickness of the shell would be the light travel distance during the time interval over which the
deceleration occurs, and thus is constant.

- However, the radius of the shell (or ring) increases as R.

- Since the total number of flux lines (in xy-plane) must be conserved, the strength of the field varies as 1/R.

1
E(dx)(2rR) = constant — F 7

r>ct

‘ r <ct |
°

u(t <0)>0 T = r=ut T =2ct
u(t>0)=0

Ys
()
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A single moving charge: Radiation Power*

* Power per unit frequency per unit solid angle of the radiation field of a single particle

Recall: aw _ R*dW — R2¢|E(w)|?
T o 2od9 ~ dwdd — TelE@)
dAdw C|E(°")| c oot 1|
— 7 9 [RE(t)]ret e dt
g0 — dA 47
T R2? 72 2
_ . : -3 iwt
472¢ / [n 8 {(n B) 'B} K Let e dt

Note: the expression in the brackets is evaluated at the retarded time ' =t — R(¢')/c.

Now, changing variables from 7 to ' = t — R(¢")/c in the integral.

1 dR(t')

dt = dt’ + P dt’ = k(t")dt’

= (1 —n(t') - B(t)) dt’

AW ¢ 2

dwdQ ~ An2e

/n X {(n —B) X 5} k2w (' HRED /e) gy
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We are only interested in the electric field measured at a far distance. Thus, we consider the case

where ‘ro‘ <L |r|=r.

(D R(t') = |r —ro(t')] = [(r — o) - (r — r0)]"/”

1/2
1/2 2(r-rg) 1
:[r2—2(r-r0)—|—frg] :rll_ . _|_T_g
r-TIp
~ 1 — )
T( r?
—r—n-rg

Here, we use the following relation. We also note that n is now independent of ¢’ in our

approximation.
r — Ip
n=

r
Ir — 1o T

2) k(') =1-n(")-B(t')~1—-n-PB(t). Here,again n is independent of 7.
(3) We note that eiw(t’—l—R(t’)/c) _ eiwr/ceiw(t’—n-ro(t’)/c) and

ez’wr/c —1

Then we obtain dW q> °

dwdQ ~ An2e

/n X {(n —B) X ﬁ} k2t (t' —nro(t)/e) gy
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2

dW q2 . {(n ,8) v ,8} —2 'I,w(t —n-ro(t’ )/C)dt

dwdQ ~ An2e

We can integrate the above equation by parts to obtain an expression without ﬂ We first note the
following relation (which 1s proved in the next slide).

£ 2nx {(n—pB)x B} = d— k'nx (nx @)

With the rule of integration by parts / flgdt = fg — / fg'dt  we obtain

This term vanishes under the
assumption of a finite wave train.

/Il % {(n . ,8) % B}I{—Zeiw(t’—n-ro(t’)/c)dt/
=n X (n X B)m_leiw(t/_n'ro(t/)/c)\iooo — /n x (nx B)r Hiw(l —n- i'o(t’)/c)}eiw(t/_n'ro(t/)/c)dt’
= —z'w/n x (nx B)k~H(1 —n - B)eiwd—mrolt)/e) gy

= —jw / n x (n x B)ei“(t/_n'ro(t/)/c>dt’ — k=1—-n-p

/n % (n x B) exp [z‘w (t’ ~ n'rs(t/))] dt’

dW q2w2

dwdQ — An2c This formula will be used later.
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* Proof of the relation:

£ °n x {(n— B) x ,8} = % [/-i_ln X (n X B)]

note the vector identity: A x (B x C) =B(C-A) - C(A - B)

d _ B dr :

%[/{ 'nx (nxpB)] =k —Enx(nxﬁ)%—fmx(nxﬁ)]
d .

Here, use the relations : k =1 —n - 3, d—:’ =-—-n-0

% kT'nx (nx @) =r"7

(n-B){nx (nxB)}+(1-n-B){nx(nxa)}
(n-B){nx (nxB)}+nxnxB) - (n B){nx(nxpa)}
(n-B){n(n-B)— B} +nx (nxB) - (n-B){nn-3)- A
—(n-B)B+ 1 B)B+nx (nxf)

—nx (BxB)+nxnxg)

1 x {(n—8) x )
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Radiation from Nonrelativistic Particles

e Using the above formulae we can discuss many radiation processes. The previous

formulae 1s fully relativistic. However, for the moment, we will discuss nonrelativistic

particles:

U
f=-<1
c

Order of magnitude comparison of the two fields:

q B q Era  Ri
rad ~ — 3D EV ~ 7 ~
c k°R

E el ™~ 7 Y
k3 R? Eoo c?

If we focus on a particular Fourier component of frequency v or the particle has a
characteristic frequency of oscillation v ~ 1/T, then u# = uv, and the above equation
becomes:

E..q Rurv u R

. T2 T e

For field points inside the ‘“near zone”, R < A, the velocity field is stronger than the
radiation field by a factor c/u = 1/p.

For field points sufficiently far in the “far zone’, R > A(c/u) = A/, the radiation
field dominates and increases its domination linearly with R. In astronomy, we are
only interested in the “far zone”. Therefore, let’s consider only the radiation field.
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Larmor’s Formula

e When / < 1, the EM fields can be simplified to

qg[ n - n
B = 2 <{ln-)
d C /ﬁJgR 8 (n 13) 8 IB ret
~ [ 2 : }
[RCQH < (nx1) ret
Braa = [n X Epad),o
d [ d] ¢ u Erad
A

e As shown in the figure, E_ 4 is in the plane
defined by n and u.

plane of n and 1

Note that n and n X u are perpendicular and

‘n X 1'1‘ = ‘u‘ sin ®, where O is the angle
The Erag field is in the plane of (n, ).

between n and u.

Therefore, the magnitudes of E_ ; and B are - Also, note that
. nx (nxu)=nn-u)—u .
i fnx (nx ) = (W) 4 (W) - 20 a)? |
o |Erad| = [Braa| = Re2 sin © = i’ cos® © +i° — 2i” cos” © |
. ' = 1%(1 — cos® ©) '
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* The Poynting vector 1s in direction of n and has a

magnitude.
C C
S= _—ExB=——_F?
4 a 4 rad !
2 2
c qg“u . 5 . dW _q _9
AS; — (:) - — er S C11
ir B2 O faa T8 )

This 1s an outward flow of energy (per unit time and
per unit area), along the direction n.

Radiation patter: The energy emitted per unit time
into solid angle d€2 about n can be obtained by
multiplying the Poynting vector by R?.

aw aw

—— =R*—— =R’S
dtdS dtd A
2,&2 9
= sin“ ©
P 2,02
d il sin? ©

dQ ~ 4ncd

“rad

d 2
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e Total power emitted into all angles: - N
E /_1<1_N2)dﬂzg n
dw q2u2 o q2u2 1 T 2 -------------------------
P=-g =% O = 1— p?)d

dt dred o 203 /_ 1( ) dp

dP _ g*i® . , 2% i E\rod

—_ = ° P _

R ) = A

—

This 1s the Larmor’s Formula for emission
from a single accelerated charge g.

plane of n and u

The emission from a single accelerated charge has the following properties:

1. The Power emitted 1s proportional to the square of the charge and the square of the
acceleration.

2. We have the characteristic dipole pattern sin’ ® : no radiation is emitted along the

direction of acceleration, and the maximum is emitted perpendicular to acceleration. (see

the figure in the previous slide)

3. The instantaneous direction of E_ 4
along a line, the radiation will be 100% linearly polarized in the plane of 1 and n.

is determined by 0 and n. If the particle accelerates
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Dipole Approximation (the radiation from many particles)

o Consider many particles with positions r; , velocities u; , and charges ¢; (i = 1,2,3,---,N). The

radiation field at large distances can be found by adding together the E._,; from each particle.

However, the radiation field equations refer to conditions at retarded time, and the retarded times
will differ for each particle. Therefore, we must keep track of the phase relations between the
particles.

There are situations in which it is possible to ignore this difficulty:

Let L = typical size of the system
7 = typical time scale for variations within the system

If © > L/c (light-travel-time), the differences in retarded time across the source are
negligible.

Note that 7 can represent the time scale over which significant changes in the radiation field,
and this in turn determines typical characteristic frequency of the emitted radiation. This
condition is equivalent to the condition for the characteristic frequency (or characteristic

wavelength) : 1 ;

C
Ve — <K — or A= —> [,
T L %

In other words, the differences in retarded times can be ignored when the system size is much
smaller than the characteristic wavelength.
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e We may also characterize 7 as the time a particle takes to change its motion substantially.

Let £ be a characteristic scale of the particle’s orbit and u be a typical velocity, then 7 ~ £/u.
The above condition 7 > L/c then imply u/c = ¢/(rc) < /L

But since £ < L, the condition for dipole approximation is simply equivalent to the
nonrelativistic condition:

u<kce

With the above conditions met we can use the nonrelativistic form of the radiation fields:

g; n X (n X ;)
; c? Rz

7

Erad —

e Let R, be the distance from some point in the system to the field point. Then, R, = Ry + ¢; ® R,
as Ry > ¢, . Finally, we have
n X (n X d)

1 HX(HXZ-qiliZ')
E. .4~ . — | Eraqg =
rad C2 RO rad CQRO

where the electric dipole moment 1s defined as d— Z 0T

1

Note that the right-hand side of the above equations must still be evaluated at a retarded time,
but using any point within the region, say, the position used to define R,,.
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e As before, for a single particle, we find the generalized formulas

for the radiation patter and the total power, which are called the
dipole approximation:
ap  d? 2d?

. 2
@t p—2
dQ)  4nc3 S S 3c3

Note that the instantaneous polarization of E lines in the plane
of d and n.

Spectrum of radiation in the dipole approximation:

For simplicity we assume that d always lies in a single direction.

Then, the magnitude of the electric field 1s given by

E(t) = d(t) s5in © where d(?) 1s the magnitude of the
¢ Ry dipole moment.

oo

Fourier transform of d(?) is defined as d(t) = / e "“d(w)dw
Then, d(t) = —/ w?e™ "t d(w)dw

— o0

_ 1 _
E(w) =— R w?d(w) sin ©

“rad

dQ




* The energy per unit solid angle per frequency range in the dipole approximation is given

by
dW R2 daWw
— = I dW .
dodQ ~ VdwdA = 2 |d(w)|*sin®>©
dW :c\E(w)f dwd) 3
dwdA

The total energy per frequency range is

dW B 8Tw? | -
dv  3¢3

(w)|*

 The above formulas describe an interesting property of dipole radiation, namely, that the
spectrum of the emitted radiation 1s related directly to the frequencies of oscillation of the
dipole moment. However, this property 1s not true for particles with relativistic velocities.

o It is also worthwhile to note the dependence of ®* « A~* in the power spectrum.
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Homeworks (due date: 10/12)

[Q5]
(1) Read the following document about the Schwartz inequality.

https://mathworld.wolfram.com/Schwarzslnequality.html

Schwartz inequality: (F1FE7) (FoFEy) > (EhES) (EoEY)
(2) Using the above Schwartz inequality, show that
12 2 Q2 _|_ U2 _I_ V2

from the definition:


https://mathworld.wolfram.com/SchwarzsInequality.html

