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P Cygni Profile

e The P Cygni profile is characterized by strong (redshifted) emission lines with corresponding
blueshifted absorption line.
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P Cygni profile formation

e The blueshifted absorption line is produced by material moving away from the star and toward
us, whereas the emission come from other parts of the expanding shell.

credit: Joachim Puls
approaching slightly modified

OBSERVER

— 1}V

receding C

absorption emission P Cygni profile

.....................................................................................................................



Lya Resonance Scattering
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which was derived from the series solution of Dijkstra et al. (2006).
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isotropically and has a temperature of

T = 10*K and a column density of
Ny = 2 x 10?° cm~2. The maximum
velocity Vmax of the Hubble-like

outflow is denoted in units of km s~ 1. H Lsphere H I shell
The ordinate is the mean intensity
integrated over the solid angle outgoing
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Semiclassical (Weissokpf-Woolley) Picture of Quantum Levels

* In the semiclassical picture, each level is viewed as a continuous distribution of sublevels with
energies close to the energy of the level (E,).

The distribution of sublevels are explained by the Heisenberg Uncertainty Principle. The level has
a lifetime Atz = 1/A (A = Einstein A coefficient) and a spread in energy about AE =~ h/At = hA.

AEAt ~ h o

The ground level has no spread in energy

because At = 0.

The atom 1is in a definite sublevel of some level.

Ly

A transition in a spectral line 1s considered to be an instantaneous transition between a definite
sublevel of an initial level to a definite sublevel of a final level.

The energy spread of a sublevel is described by a Lorentzian profile.



Raman Scattering”

 Raman scattering or the Raman effect is the inelastic scattering of a photon.

When photons are scattered from an atom or molecule, most photons are elastically scattered
(i.e., Rayleigh scattering), such that the scattered photons have the same energy (frequency and
wavelength) as the incident photons. However, a small fraction of the scattered photons
(approximately 1 in 10 million) are scattered by an excitation, with the scattered photons having a
frequency different from, and usually lower than, that of the incident photons.

Typically this effect involves vibrational energy being gained by a molecule as incident photons
from a visible laser are shifted to lower energy.

o Astrophysical Example: Scattering of O VI doublet (AA1038, 1032) by neutral hydrogen.
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Fig.1. Raman scattered emission bands in the symbiotic star V1016
Cyg. The spectrum was obtained on the 1.93m telescope at the Ob-
servatoire de Haute Provence.

Schmid (1989, A&A, 211, L31)



Relativistic Covariance and Kinematics




Galilean Transformation/Relativity

e Galilean transformation is used to transform between

the coordinates of two inertial frames of reference y o same origin at
which differ only by constant relative motion within A { t=t' =0
the constructs of Newtonian physics. K K’
o—> U
' =z — vt
y' =y
/
Z, =z O v !
U =1 O’

Newton’s law 1s invariant under the Galilean
transformation.

However, Maxwell’s equations are not invariant under

1 /
the Galilean transformation. Let us consider two frames K and K’,

as shown above, with a relative
o Lorentz transformation is the result of attempts by uniform velocity v.

Lorentz and others to explain how the speed of
light was observed to be independent of the
reference frame, and to understand the symmetries
of the Maxwell’s equations.



* Review of Lorentz Transformations *

e Postulates in the special theory of relativity

(1) The laws of nature are the same 1n two frames of reference in uniform relative motion with no
rotation.

(2) The speed of light is ¢ 1n all such frames.
e space-time event: an event that takes place at a location in space and time.
e Derivation of Lorentz transforms:

If a pulse of light 1s emitted at the origin at ¢ = 0, each observer will see an expanding sphere
centered on his own origin. Therefore, we have the equations of the expanding sphere in each
frame.

22— =0, 224?422 — % =0 1)

Since space is assumed to be homogeneous, the transformation must be linear.
¥ =aixtast, Y=y, 2=z t =bax+ bt

We note that the origin of K’ (x" = 0) is a point that moves with speed v as seen in K. Its
location in K is given by x = vt . Therefore, we have

. T =a
o 5
E:C—alzc—l—azt %:—v y =y 2)
0=aj(vt) +ast A1 i JU.
=0
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Substitute Eq. (2) into Eq. (1): %+ y'? + 2% — At'? =z + y2 + 22 — At?

at(x —vt)? +y* + 2% — A (bix + bot)? = 2 + y? + 2° — *t?

(a% — CQb%) r? — 2 (a%v + C2blb2> xt + (a%vQ — chg) t? =% — c°t?
(Note: we didn’t assume that x> + y’2 + 77 — 2% = 0)

Therefore, the following equations should be satisfied.

2 _
=1 (@ (@ #=" (B e’ == el o
(a%v + c2blb2) =0 (b) — 2 S oay = 1 = ~
2,2 272 2 (c) b5 =1+ —aj 02
ajv® —c*bs = —c* (c) 2 c2 1 — =z

Finally, we obtain the Lorentz transformation (and its inverse):

aj — & —via

a; should be positive because
x">0whenx >0atr =0.

: We take a positive b, because
it > 0 when ¢ > 0. Then, it is
 clear that b, is negative from (b).

The inverse has the same form as the original except that the primed and unprimed variables are interchanged, and v is replaced

by —U.
4 1 . )
' =vy(x —vt) x =7z +ot') where v = - _<1—62)_1/2; b= -
c
y =y Y=y 1_“_2
r_ _ c
Z =z 2=z
t’zy(t—ga:) t—v(t’—l——aﬁ’) Lorentz factor 1 <y <oo; 0<<1
c c
- Y,
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Length Contraction

e Length contraction (Lorentz-Fitzgerald contraction): Suppose a rigid rod of length
Ly=x,—x, iscarried atrestin K'.What is the length as measured in K? The positions
(x, and x;) of the ends of the rod are marked at the same time in K.

v =~(x —vt) —> Lo =25 — ) =7 (22 — 21) = 7L
L=1Lo/y

Therefore, the rod appears shorter by a factor 1/y in K.

If both carry rods (of the same length when compared at rest) each thinks the other’s rod has
shrunk!

It would appear to K’ that the two ends of the moving stick were not marked at the same time by
the other observer (in K). (Since the Lorentz transformation of time depends on position,
temporal simultaneity is not Lorentz invariant.)
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Time Dilation

o Time dilation: Suppose a clock at rest at the origin of K’ measures off a time interval

T, =t, —t; . What is the time interval measured in K? Note that the clock is at rest at the origin
of K’ sothat x,’=x,'=0.

T=ty—t1=7(t —t) =70

:fy(t’—kga:’) — T — T,

C

The time interval has increased by a factor y, so that the moving clock appears to have slowed
down, as measured in K. By symmetry, K’ thinks clocks in K have slowed down, too.

The resolution of this apparent contradiction is a result of looking at the manner of measuring an

interval of time between two events separated in space. K measures #; as the moving clock passes
X1, then measures f, as it passes x,; he/she simply subtracts #, — #; on the assumption that his/

her own two clocks at x; and x, are synchronized. K" will object to this, since according to his/
her observations the two clocks in K are not synchronized at all.

Simultaneity is relative: Simultaneous events at two different spatial points in the primed frame is
not simultaneous in the unprimed frame.

Many of the apparent contradictions of special relativity are simply a result of the relativity of
simultaneity between two events separated in space.

Time dilation is detected in the increased half-lives of unstable particles moving rapidly in an
accelerator or in the cosmic-ray flux.
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Transformation of Velocities

o If a point has a velocity u’ in frame K’, what is its velocity u in frame K. Writing Lorentz
transformations for differentials

de =~ (dx' +vdt'), dy=dy', dz=d?

dt = (dt' + —da’ '
—
We then have the relations K’ (particle)
y _dw _ v (dz’ 4 vdt’) _ ul, + v w
Coodt oy (dt +uda' /) 14 vl /c? o
o @ _ dy/ _ U; > T
Yoodt Ay (dt +vda'/c?) v (14 vul,/c?)
dz u y
uz = —
dt v (14 vu,/c?) 4
or uy + v |
| = — in terms of the components of u K
1+ Oty /¢ perpendicular to and parallel to v (observer)
/
U| = el

7(1—|—’Uu1|/62) > T
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e Aberration formula: the directions of the velocities in the two frames are related by

/ ! 3 /
U U u' sin 6
tanf = — = L = where u' = |u’|

W () s )

e Aberration of light

For the case of light: u’' = ¢

tam 8 sin 6’ sin 6’
anf = =
v (cos@ +v/c) v (cosb + ) R
v (cos @ +v/c cosf' + 3 _ cost' 4+ |
cos ¥ = | 2/) ~ 1+ Beost O T Beos
\/72 (cos @’ 4+ v/c)” + sin® ¢’ g sin ¢’ |
sin 0’ sin @’ v (14 Bcost)
/
\/7(C059’+v/c)2+sin29’ 7 (1 + Feost)
: : : 0 in 6
Using the identity, tan { — | = o
2 1 +cos6
. . 0\ (1/~)sin 6’ B (1/~)sin 6’
The aberration formula can be written as: tan (5) 1+ BcosB +cosl +8  (1+8)(1+cosd)

4 )

2 /
tan (g) — (%) tan (%) — 0<0
- Y
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 Beaming (‘“headlight”) effect:
If photons are emitted isotropically in K’ , then half will have 6’ < #/2 and half 6" > /2.

Consider a photon emitted at right angles to v in K'. Then we have

cost = 1cisg'+59/ : 9 NE
: | S beam half-angle: | sinf, = —, cosf, =3, or tan (519) _ (1 )
sinf = v(1+Bcost) | 8 + 0

For highly relativistic speeds, y > 1, 6, becomes small:

sinfy ~ 0, —— [ 9b%l J
~

Therefore, in frame K, photons are concentrated in the forward direction, with half of them lying
within a cone of half-angle 1/y. Very few photons will be emitted with 8 > 1/7.

K/
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Power density emitted along the direction 0

du
P(p)dudg = P'(p')dp'd¢" = P(u) = P'(u') | = ;o]
K Pi(p') = 2
¢ =¢" from the symmetry 1
P(p) o 5
(1—Bp)
W +B . du’ 1
M= , TN = = 2
14 Bu 1 —pu dp (1 = Bp)
' P(Q)lforB = 0.90 (/y = EL.OO) ' ' P(Q)lforB = 0.I50 (/y = 9.87) ' ' P(Q)lforB = O.I90 (L/y = 9.44) ' ' P(Q)lforB = O.I99 (/y = 9.14) '
0.0} 0.0} j 0.0} O : 0.0} ]

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
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Doppler Effect

* In the rest frame of the observer K, imagine that the moving source emits one period of radiation

as 1t moves from point 1 to point 2 at velocity v .

Let the frequency of the radiation in the rest frame K’ of the source be @w’. Then the time taken
to move from point 1 to point 2 in the observer’s frame 1s given by the time-dilation effect:

At = 2—7T — At = At’fy — %7 K observer

<

Now consider the situation of the right hand side figure.

The difference in arrival times Af, of the radiation emitted at 1 and 2 is
equal to A7 minus the time taken for radiation to propagate a distance d.

AtA:At—C—Z:At<1—ECOSQ)

C C

>
Therefore, the observed frequency @ will be |0 L=t 2
2 w' w 1 v 1
CU_AtA_W(l—ﬁcosH) w' (1 — Bcosh) v (1 — Pcosh)

Note that the angle 6 is measured in the rest frame K.

Note that 1 — fcos@ appears even classically. But, the factor 1/y 1s purely a relativistic effect.
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e If a source approaches head-on, & = 0, we obtain

143 1/2
v = (W) 0 Here, v, = v’ is the emitted frequency measured by K.

e Classical (nonrelativistic) Doppler shift (f < 1):

v 5?
Yoo (1_7+...)(1+Bc089+---)%1+50089--- (B 1)
)

e Doppler shifts in astronomy

- The frequencies of spectral lines from celestial sources are often shifted owing to the motions of the
emitting objects: gaseous clouds, stars, or galaxies.

- Astronomical sign convention: In the classical Doppler shift, the observed shift of frequency reflects
only the component of the velocity along the line of sight, the radial component v, . The astronomical
convention is that the radial component be positive if it is directed outward and negative if it is
directed inward. Then, the classical Doppler shift takes the form:

% vV — U : . .
[ — =1 Ur or o _ _Yr J v and v are the observed and emitted frequencies, respectively.
o C o C

- Optical astronomers work in wavelength units. Then the Doppler shift is given by

A v, A—Xo v A (14u e\ Y?
— =14+ — or = — ~— = relativistic version for strictly radial motion
)\0 C )\0 C A0 1— v, / C y '




- Redshift parameter: The optical spectra of distant luminous objects called quasars have spectral lines
shifted by large amounts of lower frequencies. If these redshifts are interpreted as Doppler shifts, they
indicate recession velocities approaching the speed of light. These velocities are due to the expansion of
the universe; the expansion 1s such that the more distant the object, the faster it recedes. Astronomers
define the “redshift” parameter z as

A— A A 1 1/2
Z = 0 - 2 _ 1 z+1= t+or/c relativistic version for strictly radial motion.
)\0 )\0 1— Up / &

- The most distant quasars known are at redshifts z ~ 6. At this redshift, A/4; = 7, indicating that the
observed wavelength is seven times the rest wavelength in the quasar frame. An ultraviolet emission
line at 4; = 121.5 nm (Lyman «) would be shifted almost into the near infrared at 850.5 nm. In this
case, the speed factoris . = V./c =0.960. The quasar is receding at 96% the speed of light.

- We remind that special relativity 1s not really appropriate to our universe with its changing rate of
expansion.

e Transverse (second-order) Doppler effect:

- Now consider that a source moves relativistically from left to right. In this case, we find

1 <1 at 0=m/2 Surprising! A redshift to lower frequency (v/v, < 1) in contrast
w oy T to the classical case, which yields no shift.
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Second-order Doppler effect

e Recall beam half-angle = 6, = sin™ "~

* Angle for null Doppler shift is defined by:

redshift -
w 1 1 ) blueshift
wt (1= Beoshn) source ! 0, | | ocam---
1 A1 1 R | _1/2 -------------- 0
—  cosf,, = T = i ! "--).b
3 14471 ;
: —>1(0<6,)
.« L . VW
Relativistic Doppler effect can yield < (0> 06,) S~
redshift even as a source approaches. T
] — =1\ Y2 1
cosé’n:( fyl) ~1—— for v>1
L +~~ Y
90 [ ' ' ' 10°§
80 - :
6> 1 -
1——2~1—— 70 + -
2 /y ~ 60 B en —~ 101 _
1)) a0 I
5 S 50¢ S |
Hn%\ﬁz\/%b % 401 % B 0l
! % 30 5 10
20+
10r 107}
oL ...

e Note 6, <6,

00 02 04 06 08

B

10°
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Superluminal motion of relativistic jets

- Background

- In astronomy, superluminal motion is the apparently faster-than-light motion seen in
some radio galaxies, quasars, and recently also in some galactic sources called
micro quasars. All of these source are thought to contain a black hole, responsible for
the ejection of mass at high velocities.

- In 1966, Martin Rees pointed out that “an object moving relativistically in suitable
directions may appear to a distant observer to have a transverse velocity much
greater than the Speed of ”ght-” Superluminal Motion in the M87 Jet

The superluminal expansion
of 3C 279 is shown over a six
year period.

nucleus

1994

1995

1996

The inner regions of the jet of M87 as
observed by the Hubble Space
Telescope through the period 1992-1998
(Biretta et al. 1999). The optical knots 1998
are observed to move out from the

nucleus at speeds up to 6¢.

1997

6.0c 55¢ 6.1c 6.0c
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2 / > t/2

E dJ_ observer

tl v - tll

source

. Let’s imagine that a plasma cloud is ejected from a source, moving with a velocity v along a
direction that makes an angle 8 (0 < 6 < x/2) with line line of sight.

Suppose that the cloud starts at an instant #;; the photons emitted at this time reach Earth at
t; = t; + R/c, where R is the distance to the source from Earth.

At 1,, the cloud is at a distance v(#, — £,) from the source. Its distance from the source projected
on the sky is d;, = v(t, — t;)sin 0, whereas its distance from Earth is R — v(#, — t;)cos 0.

Therefore, the photons that left at time 7, reach Earth at the time #;, = 1, + [R — 0(t, — 1;)cos 9] /c.

Thus, to an observer on Earth, the cloud appears to have moved the distance d, in the time
interval 1, — 1, = (¢, — £))(1 — v/ccos0).

The “apparent” velocity v, = d, /(t; — 1) of the cloud on the sky is

app

psin 6
1 —fBcosO’

Eq.(D):| fypp= where f,,, = v,,,/c, and f = v/c

app
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8, — fsin 6
PP 1 — Bcosh

l

This factor reduces the arrival time
interval of the signals

In the figure, dashed lines denote

B, = Bsin0.

ﬁapp

2.0

1.5

1.0

— B =0.90 ]

B =0.80
—— B =071 -
—— B =0.50 |

« When the actual speed of the object is close to the speed of light, the apparent speed

can be observed as greater than the speed of light.

- The superluminal effect arises because of the quickly decreasing path length
between a rapidly approaching object and the observer. The detected signal at 7, is

observed at a greatly reduced interval by the observer because this signal has a much

shorter distance to travel.
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Lorentz Invariant

e Lorentz invariant: A quantity (scalar) that remains unchanged by a Lorentz transform is said to be a

“Lorentz invariant.” For instance,
22 _|_y/2 4+ 2 242 72 (;U . 5675)2 4 y2 n 22 72 (Ct . ﬁaz)2
:72 (1—52)a:2+y2+z2+v2 <5262 —62)t2
=z’ +y° + 27—t

Proper distance: Since all events are subject to the same transformation, the space-time “interval”
between two event 1s also invariant.

ds? = dz? + dy® + dz* — Adt?
This is the spatial distance between two events occurring at the same time (dt = 0). This is called the
proper distance between the two points.

Proper time interval:  ¢2dr? = —ds? = Adt* — dz? — dy? — dz°
This measures time intervals between events occurring at the same spatial location (dx = dy = dz = 0).

If the coordinate differentials refer to the position of the origin of another reference frame traveling with
velocity v, then

a5 () + ()] (2) e -

This is the time dilation formula in which dr is the time interval measured by the observer in motion.




* Four-Vectors *

o Four-vector: Invariant in 3D rotations: dx? + dy2 + dz?

By analogy, the invariance of the space-time interval suggests to define a vector in 4D space (4
dimensional space-time vector or four-vector). The quantities x* (u = 0,1,2,3) define
coordinates of an event in space-time.

2" ct
2 | x| (et Contravariant components
- 22 |y | \x
ZCS Z
2

« Minkowski space: The fact that the expression for s> contains a minus sign in front on ¢¢
means that space-time is not a Euclidean space; it 1s a special space called Minkowski space.
Such space can be handled in two ways, either by including v/—1 in the definition of the time
component or by introduction of a metric. Once the notational difficulties of the metric approach

are mastered, 1t 1s not much more complicated than the v/—1 approach.

A metric tensor allows defining lengths of curves, angles, and distances in differential geometry.
Let’s define Minkowski metric, which can be presented in the 4 X 4 matrix:

—1
Note that this metric is symmetric:

Nuv = My

O = O O
—_o O O

-~

=

AN

|

3

=

AN

|
o oo
oo RO
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Summation convention:
The invariant can now be written in terms of the Minkowski metric:
3 3
2= Y mueta
u=0r=0

An important and beautiful notational advance (originated by Einstein) is the summation
convention. In any single term containing a Greek index repeated twice (between
contravariant and covariant indices), a summation is implied over that index. This index is
often called a dummy index.

Therefore, we can write the invariant s* without the summation signs.

s? = N TH T

An important point is that an index cannot be repeated more than twice in a single term; for
example, the combination 7, Mx” is regarded as meaningless.
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e Contravariant/Covariant components

: 0 P T —ct
contravariant L ct covariant 0
7l T T T
components: a— — components: Ty = =
ted T2 Y bscrinted L2 Y
superscripte subscripte
(superscripted) 5 . ( pted) 3 2
[Th f Iti loci A
They are related by Ty = N v, ot = 77“” 7). e Componegts of a position (Ve. ocity etc.) vector
contra-vary with a change of basis vectors to
The metric can be used to raise or lower indices. compensate. Transformation rules between the
, following two vector components are inverse. This is
Now, the invariant s~ can be written simply the basic idea of “contravariant” and “covariant.”
g 0A ox” 0A
2 _ [T % 2 U o oz’ _
S = X — S =TT T’ = T, =
Npv K _ ox? ox'*  Jx'F Oxv y

Note that summation on indices occurs only between contravariant and covariant indices.

* Lorentz transform (corresponding to a boost along the x axis) can be written in terms of a
transformation matrix.

Lorentz transformation:

o't = A¥ z¥
ox'#
Vo Qgv

AM

AH

T

transformation matrix:

y —py 0 O
By v 00
0 0 1 0
0 0 0 1

Any arbitrary Lorentz transformation can be written in the above form, since the spatial 3D
rotation necessary to align the x axes before and after the boost are also of linear form.



e Conditions for the Lorentz transformation:
From the invariance of 52, we must have
Nt 2" = Nerd’?x’" = ne, A7 AT 2t 2"
This can be true for arbitrary x* only if
Nuw = Ner A, A7, or equivalently n = A'nA in matrix form
Taking determinants yields

det A = +1

Proper Lorentz transformations (to keep the right-handness), which rules out reflections such as

X - —X.
det A =1

Isochronous Lorentz transformations (to ensure that the sense of flow of time 1s the same in two
frames)

AV >1

e The Lorentz transformation of the covariant component can be obtained as follows:

4 )

/ N v N T

ox, =A"r, where A =n, A",
/I T T o __ T OV 3 w vV 3 HT
Ty = Nur® " = NurN 527 =1y, A o™y ,
~ ox
AV =_F
# 0x,,
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« From the invariance of s2 = x”xﬂ .

0.1 _ AOC VA W _ AC A MU
r’r, =N "Nz, =N A"z,

~ 1 0 0 O
AN A =00, where we have introduced (O 1 0 O\ | |
T on_ (A1) the Kronecker delta o, = 00 1 0 Identity matrix
’ ’ \0 0 0 1)

e For any arbitrary contravariant components,

Q" = 5",Q"
e Note that
" Ny = 5”1/
using A AP =M
e Inverse transform l

AP x (27 =A% 2%) — M =A Lt note: AH = (A_l)ua
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Other Four-vectors

e Four-vector: is defined such that the transformation of components between any two frames is
given by the same transformation law as applies to x*

contravariant covariant
A — At =p*A, Ay =AY
At = AP, AY Al =AYA,

—

o Let us consider two four-vectors A and B . We define the scalar product of them.

~

A/MB;L - A'uVA/uLUAVBU — 5JVAVBU = A"B, — [ ff é — AMB/L — A/MB;L ]

Therefore, the scalar product of any two four-vectors i1s a Lorentz invariant or scalar. In particular,

the “square” of a four vector is an invariant. Thus, our starting point, the invariance of s> = x”xﬂ,

1s seen to be a general property of four-vectors.

* Note A-A>0 — spacelike four — vector

=0 — light — like (or null) four — vector

<0 — time — like four — vector

A’ —  time component

A" — space components (ordinary three — vector)

A-B=-A"By+A -B=-ABy+ A'B; (i=1,2,3)
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Four-velocity

The (infinitesimally small) difference between the coordinates of two events 1s also a four-vector.
Dividing by the proper time yields a four-vector, the four-velocity:

Uuzdx—ﬂ —> UO:Cth:c*yu ( \ where vy, = (1—u2/c2)_1/2
dt dT' or 0— " (C) I
bbb ' ) dx’b 7 u U —= E
dr = dt/~ U' = dr = YulU \ y

— —

length of the four-velocity : (U U =U"U, = — (yue)” + (yeu)’ = =2 )

Transformation of the four-velocity: The first two equations become:

1 /) 2
0 (09— ) eyl Bt) =
/1 1 /1 1
Ut =5 (-pU° +U) — W T (=Bevu + Yuw) Yt =7 (u —v)
U2 = [J? Tuw W = YU i Note: y denotes the factor for the relative
13 __ 3 : velocity between two frames.
U = u : :
U =u? Tu Tu 1y, and y,, are the factors for a velocity vector !
i measured in K and K’, respectively. :
T
. 1 U —v .. . .
velocity component: v = 75 This is the previously derived formula.
1 —ovul/c
_ 1 v’ This is the transform for speed.
speed: Tu =TV + 7 72

1

Here,u = ucos@ and u' = u' cos @
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Momentum and Energy

e Four-momentum of a particle with a mass my is defined by

Pt = moU"

PY = mgc,

P = ~v,moV

e [n the nonrelativistic limit,

0 2 2 v’ e
P“c = mgyc®y = mgc 1_0_2

1

= moc” + §mov2 T

Therefore, we interpret E = P'c = va0C2 as the total energy of the particle.

The quantity m002 1s interpreted as the rest energy of the particle.
Then,
p = v,mov, P! = ( E / c, p) Here, p is the spatial component of the four-momentum.
Since U< = —c~,we obtain P? = —mZc?. Comparing with p2 — —— +|p|” » We obtain
c

E? = m%c4 + 2 \p]z

 Photons are massless, but we can still define

Pt =(E/c, p), E=|p|c

- P?2_9

for photons
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Homework (due data: 10/26)

[Q7] See pages 21-23

(1) From Eq.(1), show that the condition for the apparent velocity to exceed the speed of light (f

app > 1)
IS given by Eq. (2).

Eq.(1): psing Eq.(2): sin+cosd > -
. . = : . . S1In COSU =2 —
1 ™" peosh 1 5

(2) Take a square on both sides of Eq. (2) and show that the condition for the superluminal motion is

_ 1
Eq.(@3): sm292ﬁ—1

(5) Note that sin 26 is symmetric about 0 = z/4. By setting 0 = n/4 + x, show that Eq.(3) is equivalent to

the following condition.
1 (1
< —cCos — —1
2 2

(6) From Eq.(3) or (4), show that there is a limit on /# below which the source will never appear
superluminal. The limitis ... = 1/4/2. This result indicates that the cloud should move relativistically

min

at least at a velocity of ~ 71% of the speed of light to show the superluminal motion.

Eq.(4): |0=2=
q.4): 7

(7) Differentiate the right hand side of Eq.(1) with respect to 6 and calculate the angle 6_,,, at which the

apparent velocity is maximal. What is the maximal, apparent velocity 5,577



