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[Synchrotron Radiation]

Particles accelerated by a magnetic field will also radiate. Acceleration by a magnetic field
produces magnetobremsstrahlung, the German word for “magnetic braking radiation.”

Cyclotron radiation: For non-relativistic velocities, the radiation is called cyclotron radiation.
The frequency of emission is simply the frequency of gyration in the magnetic field.

Synchrotron radiation: For extreme relativistic particles, the frequency spectrum is much more
complex and can extend to many times the gyration frequency. This radiation 1s known as
synchrotron radiation.

Synchrotron radiation is ubiquitous in astronomy.

It accounts for most of the radio emission from active galactic nuclei (AGN), which are thought
to be powered by supermassive black holes in galaxies and quasars.

It dominates the radio continuum emission from star-forming galaxies.
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Puzzling radiation from the Crab nebula

e A large part of the supernova remnant called the Crab nebula
appears as an bluish haze on the sky, and the origin of this light
was, for a long time, a big mystery.

The bluish luminosity in the optical band could be considered to
indicate the presence of a hot, optically thin thermal plasma with
a temperature of ~ 50,000 K.

Such a hot plasma would radiate strong optical emission lines
from excited atoms in the plasma. However, no strong spectral

lines are observed. The spectrum 1s a smooth continuum.

. . Crab Nebula (HST mosaic image)
The puzzle of the source of radiation from the Crab nebula was e rapidiy spinning (30 times aiecond)

solved dramatically when a Russian scientist (Iosif Shklovsky)  neutron star embedded in the center of the
. . . ) nebula is powering the nebula’s interior bluish
postulated in 1953 that the bluish radiation might be the same as  glow. The blue light comes from electrons

that previously discovered in man-made electron accelerators. ~ Whirling at nearly the speed of light around
magnetic field lines from the neutron star.

He therefore suggested that optical astronomers look to see if the (RN RAEIENGaidTn
radiation from the Crab is polarized. They did (in 1954) and Chandra X2y Imgoe I bige)
found it to be so. : 5

Nevertheless, this explanation was quiet a surprise; it required
that the radiating electrons have energies in excess of 10'! eV.
This raised the question of how the electron attained such high
energies. Later (1969), it was found that the energy source is a
spinning neutron star, the Crab pulsar.



[Equation of Motion in a uniform magnetic field]

e Consider a particle of mass m and charge ¢ moving in a uniform magnetic field, with no electric field.

e Equations of motion: e e ee e ee e :

Recall Four-momentum: Pt = (fymc2, fymv)
d_E — d(/ymcz) =qv-E=0 Four-force: pu_ @P* _(1dE dp
dt dt ~ dr _'V(cdt’ dt)
d_p _ d(fymv) _ gV <« B Lorentz Four-force: Fl o onty, = %F U, .
dt dt = :%’Y(E-V, cE + v x B)

The first equation implies that ¥ = constant (or equivalently | v| = constant). Therefore, it follows that

dv
- — - B
ym n CV X

Decompose the velocity into v = v, + v, and take dot product with B.

vy, BT T T
7 dt
B- (fym—V:gVXB) — 3
dt C dV
L q
i = V] X B
Therefore, ) yme
V|| = constant

|V | = constant (since |v| = constant)

Helical motion: The perpendicular velocity component processes around B. Thus, the motion is a
combination of the uniform circular motion and the uniform motion along the field.



- Rearrange the above equations:

— | 4| _

dt

vV =V + Vv . B
vie_ _—°€ VLxB:—w—BVLXB Here, wp
dt YMeC B YMeC
d2VJ_ WB dVJ_
=———xB
e B dt
2
— W
= B_B2 (v. xB)xB
W
2 [~v.(B-B)+B(v.-B)
-
d2VJ_ 2 . .
2 —wgrVl :harmonic oscillator
\




- Solution:

» Assuming the initial conditions v, ||y, r| x, and z =0 atr = 0, we obtain the following solution

v(t) = vy (—xsinwpt + y coswpt) + zv|  : harmonic oscillator
UJ— A A . A

r(t) = — (X coswpt + y sinwpt) + Zv)t
WB

- Helical motion: The perpendicular velocity component processes around B. Therefore, the
motion 1s @ combination of the uniform circular motion perpendicular to the magnetic field
and the uniform motion along the field.



- The particle gyrates along the magnetic field lines with the angular velocity w.

- Its trajectory has a helicoidal shape, with gyro radius r; and pitch angle a.

eB
gyrofrequency: wg =
ymeC
. V)
gyroradius: g = —
Wg
pitchanglex: v =wvcosa, v, =vsina

angle between the magnetic field and velocity

or angle between v, and v

....................................................................................

eB
Larmor frequency: o, = —

m,c

D
. 1
Larmor radius: r; = —

Wy

(It is also called as Cyclotron frequency or non-relativistic gyrofrequency.)

\

pitch angle o



[Synchrotron Power Radiated by a Single Electron]

e Total emitted power:
2

Since a; = wgv, and q; =0, P = 3—2374 (ai ™ VQCLIQI)

2 ,q*B? 2
=3 22}1265 v o= grgCBnyQBQ sina + (v, = vsina)

= 207c(yB)?Up sin® a

where «a 1s the pitch angle, the angle between magnetic field and velocity.

v-B _e? 37 B?

_ 9
cosa=-—— r,=— or=—r2 Ug =
vB '’ mec2’ 3 ¢’ 81

For an 1sotropic distribution of velocities, it 1s necessary to average the formula over all angles.

1 2
e | (b= [t
4 1
= —O'T662’}/2UB B%=1-— —
3 8
(m~=2  for a fixed velocity (7) This indicates that the synchrotron
Note that P ¢ ¢ —  radiation is mostly due to
\m~*  for a fixed energy (ymc?) electrons.
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- Cooling Time

* The energy balance equation becomes:

dry 2 ,e*tB?
2 .
MeC pr = —P < P = §72 2 B? (sin® a)
4 12 Né 2 e’ 2 ~ 2\
cjl_’ty - —A”yz where A — ;le 335 ~ 57 —mgc3B — B~1, and (sin®a) =2/3
m3c
" dy : 0 4e* B?
—=— | Adt' — t) = Here, 79 = v(t = 0) and A = .
/7O ~72 /0 v(t) 1+ Aot ere, 7o = ( ) an o

e Cooling time: the typical timescale for the electron to loose about of its energy is approximately

1 7.8 x 108
tcool = t1/2 — A—% — ’YOBQ

S

In the vicinity of a supermassive AGN black hole, B ~ 10° Gauss and for y =~ 10°.

Location Typical B 1.0 cooling length size of object
R Cleool

Interstellar medium 10°°G 10'Y years 10%® cm 10%* cm

Stellar atmosphere 1G 5 days 10" cm 10" cm

Supermassive black hole 10* G 103sec 3107 cm 10 cm

White dwarf 10° G 107" sec 3 mm 1000 km

Neutron star 10?2 G 100" sec 31077 cm 10 km
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[Spectrum of Synchrotron Radiation: A Qualitative Discussion]

>

Intensity

Observer

* Because of beaming effects the emitted radiation fields appear to be concentrated in a narrow set
of directions about the particle’s velocity.

The observer will see a pulses of radiation confined to a time interval much smaller than the
gyration period. The spectrum will thus be spread over a much broader frequency range than one
of order wg.

The cone of emission has an angular width ~ 1/y. Therefore, the observer will see emission over
the angular range of AO ~ 2/y.

The radiation appears beamed toward the direction of the observer in a series of pulses spaced in
time (period) 27/wy apart, but with each pulse lasting only A0 ~ 2/y.



* To Fourier analyze the pulse shape, we need to
calculate the interval of the arrival times of the
pulse corresponding to A9 ~ 2/y.

- Let’s consider an instantaneous rest frame of the
electron.

As =RA0O = the path length from point 1 to 2

R = the radius of curvature of the path
At = As/v = time interval from point 1 to 2
| Av| = vAf = velocity change - b
Observer
- From the equation of motion, we find the curvature
radius:
Av e Note that the radius of curvature is
YMme— = -V X B : : oy
At ¢ different from the gyroradius, which is
vAf e , As v the projected radius of the curvature
YMe = —vBsina = R=— = : .
As/v ¢ Af  wpsina radius.
r
- Therefore the path length is given by ( Sin-a
2v )
ASZR(Q/’}/): = v] =vsino

YwpSsina  wp sino 0.

wB

rB =



Time interval that the particle passes from point 1 to 2:

As 2
At:tg — 11 = ~ :
v wi, Sin «

However, this is the time interval for the particle to travel from point 1 to 2. We need to
calculate the interval of the arrival times of the pulse measured in the observer frame.

Note that point 2 is closer than point 1 by As/c. Therefore, the difference of the arrival times

of the pulse 1s )
Y= ,—1_62
~ ! — B=1
(1-25)2
A 1 1
AtA—tf—tf:At——S:At(l—g)% —— — l——~—
C & V4w, SIN & c 2v

The width of the observed pulses 1s smaller
than the gyration by a factor 2.

Observer




Temporal pattern of received pulses:

A
= :
‘D pulse duration
- -3
o ~ " 21 /wp
C

27‘(‘/(,0]3
gyration period

We define a critical frequency:
3 3

22 i — D3
W =Y w; sina = 57 @y SIN

The factor 3/2 is from the accurate calculation. (See Pacholczyk
1970, Radio Astrophysics. Nonthermal Processes in Galactic and
Extragalactic Sources)

- From the properties of Fourier transformation, we
expect that the spectrum will be fairly broad,
within the frequency range of wg S 0 S o.,.

e

NN

Wy

/N

/\

—_ EN__S

.

[

3
R

Wy

20)B 3(DB

®

cyclotron

pulse
sharpening

synchrotron
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 We can derive an important property of the spectrum for the synchrotron radiation.

Remember that the electric field is a function of y8, where 6 is a polar angle about the direction
of motion, because of the beaming effect. Then we can write

E(t) o< F(v0)

Let time ¢ = 0 and the path length s = 0 when the pulse 1s centered on the observer. Then, we find

1
Hz%and t%§(1—9>%§2—2 — 1—%%2%
v c v
Then we have / \ ! ! ;
We = =y wp sin a
o < | ' | /—\ 2
VO~ y—= =~ (—wB Sma) = v (27%t) (wp sina) o wet R Y
R (Y ~___ wp sin «

Hence, the time dependence of the electric field can be written as E(f) « g(w,1).

The Fourier transform of the electric field 1s
FE(w) x / g(wet)e™tdt — £=wt

N / o)k

— 00

Therefore, the power per unit frequency is a function of w/w,: | P(w) x |E(w) \2 — C,F (i)
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[Spectral Index for Power-law Electron Distribution]

e Often the number density of particles with energies between E and E + dE can be approximately
expressed in the form (“power law”):

N(y)dy = Cy™Pdy (11 <77 <72)
N(E)dE = CE PdE (E1 < E < Es)

e The total power radiated per unit volume per unit frequency by such a distribution is given by

3
72 Recall w, = =~?wp,sina o« v2B
Piot(w) = [ N(7)P(w)dy 2
Y1 — setr=—x~v ?Blw
Y2 We
X / ’y_pBF (i) d’Y dz o< v 3B lwdy 333/23_1de
Y1 We dy e 732BY20,= 12y
L2
—(p—1)/2 1)/2 —3)/2 £ ;
X W (p=1)/ B (p+1)/ / X (p=3)/ F (33) dx i The extra factor B comes from the more detailed formula. :
1 T

e Then, the spectrum is also a power law and the power-law spectral index s 1s related to the
particle distribution index p by

(" )
Piot(w) o w B .
~x w-e=/2gE+1)/2 —m 5= P—-

2
. _J
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[Spectrum of Synchrotron Radiation: A Detailed Discussion]

 We will use the formula derived in Chapter 3.

/nX (n x B) exp [‘iw (t’_ n.z(t/)>

* The coordinate system is chosen so that the particle has velocity v along the x’ axis at time ' = 0.

dW e?w? 2

— = dt’
dwdS)  4r2c

€, is a unit vector along the y” axis in the orbital (x" — y’) plane.

Let @ represent the angle between the observing direction (n) and the velocity vector v at ¢’ = 0.

Then, an equivalent circular orbit at ¢’ is given by 7/
A
/ A/ N vt! . /
v(t') =v(X' cosp + ¥ siny), where p = == (wp sin a)t
r(t') = R(x'sinp — y' cos p)
Note that (1) n x X' =sinfy’, 2)nxy =nxe; =g
3)n-y' =0, (4) n-x" = cosf

nx(nxB)=FMmxnxx)cosp+nx(nxy
=fnx (nxx)cosp+ S (nn-y’)
= ¢|Bsinflcosp — € fsing
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We note that

Q

Q

«— n-X =cosb
3 t
_90_ < :U—
6) TR

(vt’)2 v 1

1 — 5 < 1——~—2

6R c 2y

20215’2

] 1
22

)
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* We also note that
nx(nxpg@) =e¢pfsinfcosp —€e Bsing <+ [zl
~ €| sinfcosp — € sinp

%€||(9—€J_g0

vt
= €0 — €, —
| R o n-r(t') ~ 1 (1 X 292) ¢ Ayt
ct’ c 22 7 3R?

%€||9—€J_—

R

* We can identity the contribution to the received power in the two orthogonal polarized directions.
2

dW B dWH dW | dW e?w? : ;I r(t/) /
20 = dodq -+ 2odQ < a0~ 1o /n X (n x 3)exp [zw (t — » )] dt
AW, 0202 ot i , 2243 2
_ oexp | X ( 02y /
dwdQ)  4m2c R P [272 < T IR? at
2 292 . 22,13 2 93§1+7292
dW) _ Cw 0 /exp W QQt,+cfyt/ ”
dwd() 42c 2v2 \ 7 IR?
. . 2
Now, define the following variables dw,  e*w? [ R6? > 3 1, 2
5 dwdQ ~ 4n2c ~v2c YEED S v 37 %y
/ — o0
ct UJRH,V 5

4= 77397 and 7 = 3cy3 dW _ e’w?f? RO, i
dwdQ  4n2c ye

o0 3 1
/ exp [5“7 (y + §y3>] dy
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e The integrals are functions only of the parameter #. Since most of the radiation occurs at
angle 8 =~ 0, n can be written as re e g

WwR Wu W wB 5L o
3¢y 3cy’wpsina 2w, i We 27 wpsin o

The frequency dependence of the spectrum depends on @ only through w/®..
The angular dependence uses @ only through the combination yd.

* The integrals can be expressed in terms of the modified Bessel functions of 1/3 and 2/3 order.

From 10.4.26,10.4.31, and 10.4.32 of Abramovitz & Stegun (1965)

dw,  e%w? [ RO7 i ) See Westfold 1959, ApJ, 130, 241
dwdQ  3m2c \ ~2c 2/3(1)
dwW)  e2w?6® (RO,\°
= K
dwdS) 3mlc ( ye ) 1/3(1)

* The energy per frequency range radiated by the particle per complete orbit in the projected
normal plane can be obtained by integrating over solid angle.
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* We note that the emitted radiation 1s almost completely confined to the solid angle shown shaded
in the following figure, which lies within an angle 1/y of a cone of half-angle a. Therefore, the
integral over the solid angle can be approximated by

W —/W M o edefv/oo o sin ado
do  Jy dwdQ "V ) dwaq T

e Therefore,

dW,  2e2w?R?sina /OO

4 72
dw 334 RSV ()6

— o0

dWH B 2e2W2R2 Sina/

T 90
dw eyt 97K1/3(77)d0

The infinite integral limits on the integral are convenient

and permissible, because the integrand is concentrated to
small values of A@ about «a, of order 1/y.

* The emitted power per frequency is obtained by dividing

the orbital period of the charge T = 27/ws :

A) =730
1
P (w) = 1dW,
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e Emitted power:

P, (w) = \/ii;f 8;104 F(2) + G(z) where F(z) = a;/oo K5 /3(£)d¢
e3 B sin o G(z) = 2Ky /3(x
Pyw) = \/imicﬂ [F(z) = G(2)] ( :I)E y /wi o

e Total emitted power per frequency:

F(x)
e3 B sin o 1
P) = Ri(w) + P (w) = Yoo B gy,
4 x\1/3
F(z) ~ AT (5) if <1

1/2
F(x) ~ <§> e Tgl/? if >1
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e For a power-law distribution of electrons N(vy)dy = Cy Pdy (11 <~ <2) , we obtain the total
power per unit volume per unit frequency:

Pulw) = [ NP
B \/§e3C’BsinaP (p 19) r (p 1 ) ( Mo CW )—<p—1>/2

T 2mmec?(p+1)° \4 12 3eBsin «

4 12

4 12

Piot (w) o Bp+1)/2 ,—(p—1)/2

* For the complete derivation of the formula, see Westfold (1959).
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[Polarization of Synchrotron Radiation]

e In general, the radiation from a single charge will be elliptically polarized.

The electric field 1s in the same plane as the acceleration vector, which 1s perpendicular to the
magnetic field. For any reasonable distribution of particles that varies smoothly with pitch angle,
the elliptical component will cancel out as emission cones will contribute equally from both sides
of the line of sight. Thus, on average, the radiation will be partially linearly polarized
perpendicular to the magnetic field.

Electron path from [Bradt]
Projection of magnetic
field onto sky
B /
f . . PJ_
E

Raditing PII
particle

\

To observer

Plane of the sky

Recall the electric field is in the plane made by the
acceleration vector and line of sight (Lecture 04).

—e E.gxnx(nxa)=n(n-a)—a

out of the plane
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e Degree of linear polarization of a single energy:

_ PJ_(CU) — P||(w> B G(Qj)
H{w) = P (w)+ P (w) Flx)

e For particles with a power law distribution of energies:

G(x)y Pdy 1/2
H(UJ) f Ja -1 X o0 p+1

J El@)y~rdy / :c”F(x)dx—2 H—Fz I H—Fg

[ G(2)xP=3)/2dy 0 p+2 \2 3 2 3
B (p=3)/2 > 4 2

J F(z)z® dx / " G(z)dx = 2T Py \p (B2
(p+1)/2 1 0 2 3 2 3
2 s
_p+1

p+ 3

e For particles of a single energy, the polarization degree of the frequency integrated radiation is

[ —

[ G(z)dz  p+

) =T Feyd ~ o
3

— p=3

OSIEN
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[Transition from Cyclotron to Synchrotron Emission]

e For low energies, the electric

field components vary
sinusoidally with the same
frequency as the gyration in the
magnetic field. The spectrum
consists of a single line.

When v/c increases, higher
harmonics of the fundamental
frequency begin to contribute.

For very relativistic velocities,
the originally sinusoidal form of
E(t) has now become a series of
sharp pulses, which is repeated
at time intervals 27r/wg. The

spectrum now involves a great
number of harmonics, the
envelope of which approaches
the form of the function F(x).

v<<C

A
P(v)
E
»- »
Time v
4 A
P(v) B s
E \ L
| 3
> > ;
’ U 8
Time e
S
A
A
el )| P(v)
i
-~ e >
Ata Time Vv

[Ghisellini] Radiative Processes in High Energy Astrophysics
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[Distinction between Received and Emitted Power]

e If T=2n/ws is the orbital period of the projected

A B

motion, then time-delay effects will give a period To observer

between the arrival of pulses T4 satisfying
T4 :T(l— ﬂ(30804) :T(l— BCOSQQ)

C C
2
zT(l —COSZCY) = —WsinQOz
WB
Therefore, the fundamental observed frequency is

wg/sin® o rather than wg.

e This leads to two modifications to the preceding results,
neither of which 1s serious, fortunately.

(1) Spacing of the harmonics is wg/sin” a. For extreme
relativistic particles this 1s not important, because one
sees a continuum rather than the harmonic structure. Note
that we did take the Doppler effects in deriving the pulse
width Az4 and consequently for the critical frequency ..

The continuum radiation is still a function of w/w-..

(2) The emitted power was found by dividing the energy by the period 7. But the received power
must be obtained by dividing by 7. Thus we have P, = P./sin’c.

The average power emitted and received will be the same, because the total number of emitted and received
pulses must be the same in the long run. These corrections are not important for most cases of interest.
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[Synchrotron Self-Absorption]

* Opacity

In order to calculate the opacity for non-thermal velocity distribution of electrons. We first need to
generalize the Einstein coefficients to include continuum states.

For a given energy of a photon Av there are many possible transitions, meaning that the absorption
coefficient should be obtained by summing over all upper states 2 and lower stats 1:

Qy ZZ (E1)Bi2 — n(E2)Ba1] ¢21(v)

1 2

The profile function ¢,,(v) is essentially a Dirac delta-function ¢,,(v) = 6 (v — (E2 — El)/ h) that restrict

the summations to those states differing by an energy hv = E, — E|.

In terms of the Einstein coefficients, the emitted power is given by

P(I/, EQ) = hVZAngle(V) = (2hV3/C2)hVZ B21¢21(1/) < Agl = (QhVB/CQ) le
E, Eq

- Using this, the part due to stimulated€mission of &, can be represented in terms of P:

—h—; Z ZH(EQ)B21¢21(V) = _87rchu3 Zn(EZ)P(Va L)

1

- The true absorption coefficient (first part) is:
hv C2
I EZ EZH(E1)312¢21(1/) = S Zn(Ez —h)P(v,Ey) <

2

Bio = By
E1 = E2 — hv




Therefore, we have 2
= s > [n(Ez — hv) — n(E,)] P(v, Es)
E

2

We need to convert the discrete summation to an integral over continuum energy (or momentum).

(1) Let fip)d3p = number of electrons per volume with momenta in d3p about p.
4 d°p . |
(2) Number of quantum states per volume in d°p = g? (g = 2 for spin 1/2 particles)

\/ uncertainty principle
5 dx’dp

d? h3 s _
(3) Electron density per quantum state = gfg])) / h]; = ?f (p) ;AxAp =h = X I
Therefore, we can make the replacements
> 2 / “p from (2 By - - from (3
2 13 rom (2) n(Ey) — ?f(p) rom (3)

Then, the absorption coefficient becomes

62

" 8nhi3

/ P [F(05) — f(p2)] P(v, Ea)

Ay

where p>* 1s the momentum corresponding to energy E>- hv.
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e For a thermal distribution of particles, we can derive the Kirchhoff’s I.aw for continuum states.

Boltzmann distribution  f(p) = Kexp [_ E;; g)]
* . B E2 — hv B _&
F03) = £(p) = K exp ( — ) K exp ( kT)

— f(po) (ehu/kT _ 1)

Thus, the absorption coefficient 1s

/ This integral 1s the total power per

, volume per frequency range. i.e., 47j,

_ ¢ hv /KT ) 3
, = —1 d P, FE
Qo Ry (6 / P2f(]72) (V 2)
]_ C2 h
v/kT 1> A
41 2hv3 <6 Ty

Therefore, we obtained the Kirchhoff’s Law for thermal emission.
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 For an isotropic, and extremely relativistic electron distribution, we can use energy instead of

momentum:
41 ( N(E
E = +/(pc)? + (mc?)? = pc —> d’p = dmp*dp = C—3E2dE cpf(p) = dEE? 1;2 )
e
_ N(E)dE N(E) N(E*
f(p)47rp2dp—N(E)dE —> — — 3 €\ _ o, N(EY)
f(p) Arp2dp (47‘(‘/63)E2 \d pf<p ) =dEE %2
Then, where E* = E — hv

% N(E — hv) N(E)]

dEP (v, E)E? —
Shi3 / (v B) [(E—hu)2 B2

Assume that hv < E (in fact, a necessary condition for the application of classical
electrodynamics) and expand to first order in Av.

oy =

Taylor expansion:

) N(E—hv) NE) 9 [N(E) )
- 2 /dEP(V,E>E2 d [N(E>] 4/ (E— )2 ~  E? L aE[ E2 ]+O(<h ")
8Ty OF | E?

057/:_

e For a power law distribution of particles:

2)c? N(E
= D [, ) NED
N(E)=CE™? TV
EP W
d N(FE _ —2 dEF « SetZC:—OCI/_QOCVE_2
_E2dE [ ;72 >] = (p+2)CE~(PTY) xv / (%) i3 o Y
— (p +2)N(E) X V_2/V1/2$_3/2d90F($)V_(p+1)/2x(p+1)/2

E

a, o< B(PT2)/2,,—(p+4)/2
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Note «a, o v~ P™/2 indicates that the synchrotron emission is optically thick at low
frequencies and optically thin at high frequencies.

The source function i1s

. (p+1)/2,,—(p—1)/2
S, = Jv _ M x B_1/21/5/2 < P(V) x B .

a, Amoay a, o< B(PT2)/2,,~(p+4)/2

For optically thin synchrotron emission, | [, = / j,ds o« BP+D/2,~(=1)/2 | high frequency

For optically thick emission, I, =S, oc B~1/2,5/2 low frequency

Therefore, the synchrotron spectrum from a power-law distribution of electrons has a shape like
the following figure.

|
AV)
L L

- Observations of the self-absorption
part could determine B.

- Observations of the thin part can then
determine the proportional constant K

ol and the electron slope p.
10 v, 12 14 16 18

Log v [Hz]

Log F(v) [arbitrary units]

|
0]
R
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Homework (due date: 11/13)

[Q10]

An ultrarelativistic electron emits synchrotron radiation. We derived that its energy decreases
with time according to (page 10 1n this lecture; problem 6.1 in Rybicki & Lightman):

. 70 _ 4e*B?
=TT At Here, 79 = v(t =0) and A =

t .
() O3

In contrast, we showed y 1s constant (page S in this lecture; page 168 in Rybicki & Lightman).
These two results seem to be inconsistent with each other.

How does one reconcile the decrease of y with the result of constant y? What 1s your idea to
reconcile this apparent discrepancy.



