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[Atomic Emission Line Mechanisms in ISM]

* Collisional Line Collisions with electrons can excite ions (or atoms),

(collisional excitation + spontaneous emission) moving it from level 1 to 2, or de-excite it, moving it
from level 2 to 1, with rate C5; and Cy,, respectively.

2 .
A : An excited 10n can also spontaneously emit radiation at
L : Ao the rate of the Einstein A, coefficient.
C'12 Ca1 :’\/\/\/\/\/—>
R ! In low density ISM, collisions are rare, so when the
! occasional collisional excitation happens, the ion(atom)
1 Y Y is much more likely to return to level 1 through the

emission of a photon than through collisional de-
Note that collisional de-excitation yields no photons  excitation.

e Recombination Line (photoionization + recombination)

Hot stars produce ultraviolet radiation that can ionize hydrogen and other atoms. Once 1onized,
recombination back to the neutral state produces recombination continuum and lines. Of course, the
recombination requires that the ion encounter an electron, which is a slow process in diffuse gas.

The recombination of a free electron with a proton can occur to any of the energy levels n. For instant, if
n > 1, the excited hydrogen atom will then decay to lower levels until it reaches the ground state, n = 1.
This cascade produces a set of protons, the first with an energy corresponding to the potential of the
previously unbound electron-proton pair and then the others at fixed values corresponding to the discrete
energy jumps between different 7.

In most cases, the Lyman alpha and Balmer lines are recombination lines.



[Collisional Excitation]

e Under the conditions of very low density and weak radiation fields,

- The vast majority of the atoms reside in the ground state.
Collisional excitation timescale >> Radiative decay time scale

This condition will remain true even if the excited state has a radiative lifetime of several second, which
is frequently the case for the forbidden transitions observed in ionized astrophysical plasmas.

- Flux of an emission line < number of collisions <« product of the number densities of the two
colliding species by the probability that a collision will produce a collisional excitation.

- If the energy gap between the ground state and the excited state Ej2 is much larger than the mean
energy of the colliding species (~ T), then, because there are few very energetic collisions, relatively
few collisional excitations can occur. Therefore, the resulting emission line will be very much weaker
than when E2 < kT.

This gives us the possibility of measuring temperature from the relative strengths of lines coming
from excited levels at different energies above the ground state.



e At high enough densities,
- The collisional timescales are short.

- The population in any upper level is set by the balance between collisional excitation, and the
collisional de-excitation out of these levels, and are governed by the Boltzmann equilibrium.

e n2 g2 ISP statistical weight
Boltzmann equilibrium: — = —€Xp | —7—H
no g kT gi=2J;+1

e At intermediate densities,
- The collisional rates and the radiative decay rates are compatible.
- The intensity of an emission line 1s determined by both the temperature and the density.

- If the temperature 1s known, the density can be determined from the intensity ratio of two such lines.



[Collisional Excitation & De-excitation]

e Collisional Rate (Two Level Atom)

- The cross section ¢ for collisional excitation from a lower level ¢ to an upper level u 1s, in general,
inversely proportional to the impact energy (or v?) above the energy threshold Eue and is zero below.

- The collisional cross section can be expressed in the following form using a dimensionless quantity
called the collision strength (lu:

Ty,
hR Quu 1
o (V) = (7TCL(2)) (1 H2> fu em? for “mev® > Eyup Su A :
5MeV gy 2 : :
h2 QEu 8 .
- 2,2 S =
47Tme/U gﬁ E’U,E E . O-Eu "g EO-”U,K
O D
h?  Quy 1 > b !
or oy (F) = £ <E = —mev2) .
8mmell g, 2 :
h2 nye v
where, ag = 5 = 5.29 x 1072 cm, Bohr radius &¢
Mmee€
mee 1 h
Ry = = = 109,678 cm °, Rydberg constant (h = _)
4mh 27

- The collision strength 2. is a function of electron velocity (or energy) but is often approximately
constant near the threshold. Here, & and & are the statistical weights of the lower and upper levels,
respectively.



- Advantage of using the collision strength 1s that (1) it removes the primary energy dependence for most
atomic transitions and (2) they have the symmetry between the upper and the lower states.

The principle of detailed balance states that in thermodynamic equilibrium each microscopic process is
balanced by its inverse. Hence, The collisional excitation and de-excitation are balanced in TE.

NeNpUe0 oy (Vo) f(Ve)dvp = NNy Uy 0ue(Vy) f (Vg )duy,

1
Here, ¢ and Vu are electron velocities before and after the collision, related by §me’U? = §me’03 + Eye , and

f(v) is a Maxwell velocity distribution of electrons. Using the Boltzmann equation of thermodynamic
equilibrium,

Ty, . gu Euﬁ

ne g eXP( kT)

and the Maxwell distribution function in 3D velocity space

3 [ Mg 3/2 _m€v2 3
flv)d'y = (QWkT) P ( 2T ) v

or the distribution function of speed

3/2 2
f(v)dv = ( e ) 4mv? exp (— el ) dv

2mkT 2T



we can derive the relation between the cross-sections for excitation and de-excitation

1 1
imevg = imevi +E, —» vdvy = v,du,

(energy conservation)

NeNpUrT ey (Ve) (V) dvp = MeNgy Uy Ty (Vy) f (0 ) dvy,

e 2 2 e 2 2 u
s 000 exp (—m i ) — ur(v)0? exp (—"” U/ ) % exp (

Relation between the cross-section for excitation and de-excitation
ggv?mgu (W) — guvi%dvu) —> g (E + Euﬁ) " Ofu (E + Eué) =g, k- UuE(E)

1
where FE = §mev§

We also obtain the symmetry of the collision strength between levels are

oru(ve) = W Qe
e drmZvi g, :
2o — gy = oy more precisely Qg (F + Eyr) = Que (E)
ul
O'uf(vu) —

2,2
drmzivi g,

These two relations were derived in the TE condition. However, the cross-sections are independent on the
assumptions, and thus the above relations should be always satisfied.



- Collisional excitation and de-excitation rates

The collisional de-excitation rate per unit volume per unit time, which is thermally averaged, is give by

(%)u_% = NNy /OOO voue(v) f(v)dv

B . — kue = (ov)
— llellby vy g [Cm S ]

u—L

Here, ku¢ is the collisional rate
The collisional de-excitation rate coefficient can be written as follows:  coefficient for de-excitation in

00 units of cm3 s-1-
kuwe = / voue(v) f(v)dv
0

1/2
_ (27Th4> / T—1/2 <Qu€>

kBmg Eu
B (Que) 3 —1 aN 1/2
_ 27h
TR g, s B = (l;ﬂ) — 8.62042 x 10~

Here, the effective collision strength, averaged over the energy, is given by

Its typical values are

effective collision strength:  (Q,,) = / Qui(E)e E/keT q(F /kgT)
0 1072 < (Qy0) < 10

From Qo (E+ Eu) = Que (E) = (Qu) = (Qup) e Peu/keT

The T dependence of the effective collision strength is very weak.



Similarly, the collisional excitation rate per unit volume per unit time, which is thermally averaged, 1s

dn, > 1
e = neng/ Vo, (V) f(v)dv Here, —mevly, = Eu
dt {—u 2

Umin
= NeNykyy [CHl_3 S_l]

Here, ke is the collisional rate coefficient

kew = (o)
f—u . . . ]
for excitation in units of cm3 s-1-

kg, = /OO v, (V) f(v)dv

VUmin

1/2
_ <2wh4> / - (Que) exp (_@)

3
k’Bme

Q. FE, _
2 () e 5

2 h4 1/2
( 1 > — 8.62942 x 10~

2
km?

We note that the rate coefficients for collisional excitation and de-excitation are related by

Eue

gu Eug gu
Keuw = g—ekué exXp <_k—T> (OV) sy = g_e (OV) 0 €XD (‘ﬁ)



Collisionally-Excited Emission Line

e Emission line flux

- In the low density limit, the collisional rate between atoms and electrons is much slower than the
(spontaneous) radiative de-excitation rate of the excited level. Thus, we can balance the collisional
feeding into level « by the rate of radiative transition back down to level ¢ . The level population is

determined by
% L Ne kfu
non-LTE NeNpkoy = Ayeny ny Auwe
Ne <ng> —1/2 Euﬁ
— T _ ub
Auﬁ B gy xP kT

where Aue is the Einstein coefficient for spontaneous emission. Then, the line emissivity is given by

47Tju€ — EuﬁAuﬁnu — uﬁnenﬁkﬁu
8.62942 x 107° (Q,, E,
= NeNp oy T1/>; < g;> exp (—k—zf) [erg cm™? 571
Amjue ~ BxnEe, T~V > () exp (—k—jf) Here, = ( i 2) = 8.62942 x 1076
o 1y, kme
proportional to density-square X = ng/ne

For low temperature, the exponential term dominates because few electrons have energy above the
threshold for collisional excitation, so that the line rapidly fades with decreasing temperature.

At high temperature, the 7~*/?

temperature.

term controls the cooling rate, so the line fades slowly with increasing
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- In the high-density limit, the level population are set by the Boltzmann equilibrium, and the line
emissivity 1s

47Tju£ — Eﬁu Auﬁ Ty

- — Su exp (_—6) — nﬁEﬁuAuﬁi_ exXp <_—£>
14

Ey,
A7 fut = Xe Bru Aug 2 exp (——£>

o g

proportional to density

. 2 . .
Here, the line flux scales as 7 rather than ", but the line flux tends to be constant at high
temperature.

- Critical density is defined as the density where the radiative depopulation rate matches the
collisional de-excitation for the excited state.

&u 1/2
Auﬁnu — nenukug — Nerit = Aueﬁ <ng>T /
Aue 1/2
Fut = 12 10° T (1O4K) —

- At densities higher than the critical density, collisional de-excitation becomes significant, and the
forbidden lines will be weaker as the density increases.

- At around the critical density, the “line emissivity vs density” plotted in log-log scale changes slope from
+2 to +1.
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« As can be seen in Tables and the formula, collisional de-excitation is negligible for

resonance and most forbidden lines in the ISM.
Collision strengths at T =104 K
Table 4.1 in The Interstellar Medium [Lequeux]

N, crit (4) Ton Transition A Aul 2 Nerit
E¢/k  Eu/k Xy T =100K T =5000K u wm 1 om—
Ton 1 u (K) (K) (pm) (cm™3) (cm™3)
cm ?pp, %P, 0 9121 15774 2.0x10® 1.5 x 103 Cr iPO—il’l 609.1354 793 x 10:3 - (500)
C1 3Py 3P 0 2360  609.7 620 160 Pi=h 3704151265 > 10 - (3000)
oI 3P,  3p; 0 22771 63185 2.5x10° 4.9 x 10% N Fo=P1 205.3 207> 1077 04l 4l
3Py 3Py 22771 32657 14553 23 x 10 8.4 x 103 b= 121.889 7:46>1070 138 256
Sill 21310/2 2P§/2 0 41328 34814 1.0 x 10° 1.1 x 104 3P2—1D2 0.65834 2.73 x 10‘4 2.99 7700
Sil 3P, 3P 0 11095 12968 48x10*  2.7x 104 JPi=Da o 0.65481 920 10 7299 7700
3P 3Py 11095 32107 68473 9.9x10* 3.5 x 104 NI Pijp—"P3p 57317 4.8 x 10 1.2 1880
—_— " Dra O1 3P, —3P) 63.184 8.95 x 107> — 2.3 x 10* (5 x10%)
able 17.1in [Draine] 3p, 3P, 145525  1.7x 1073 ~ 3400 (1 x 10%)
’P,—1D; 0.63003 6.3 x 1073 ~ 1.8 x 10°
On 4S3/2,—?Ds;n  0.37288 3.6 x 107° 0.88 1160
., 4S320—2D3n  0.37260 1.8 x 107* 0.59 3890
« However, 1t 1s not true for the 21 cm om  3Pp—3P, 88356 262 1075 039 461
. 3P 3P, 51.815 9.76 x 107> 095 3250
hyperfine structure line of hydrogen. Dy 050069 181.102 250 6ax 10
. . . . 3P1—'D; 0.49589 6.21 x 1073 250 6.4 x 103
- The critical density for 21cm line 1s ID,—1S; 043632 170 040 2.4 x 107
1/9 Ne 1l 2P1p—2P3n 128136 8.6 x 1073 037  59x10°
-3 — -3 Nem  3P,—3Py 15.5551 3.1 x 1072 060 127 x 10°
Terit 10 (T/lOO K) [Cm ] 3PPy 36.0135 52 x 1073 0.21 1.82 x 10*
Sin 2P1p—2P3n  34.8152 2.17 x 1074 7.7 (3.4 x 107)
4 2 —4
o 15 1 —1 Su S32—2Ds;y  0.67164 2.60 x 10 4.7 1240
A = 2.88 x 10 [s77] 4S3,-2D3p 067308  882x 107 31 3270
S 3Py—3Py 33.4810 472 x 107 4.0 1780
3P —3P, 18.7130 2.07x 1073 79 1.4 x 10*
. . Stv 2P1p—2P3;,  10.5105 7.1 x 1073 8.5 5.0 x 10*
The levels are thus essentially 1n A P tbee 69853 a0 ae 17as 106
collisional equilibrium in the cold neutral Arm PP 89914 3.08x 1072 31 275x 10°
. 3P, 3P 21.8293 5.17 x 1073 1.3 3.0 x 104
medium. Felr °D7/,—%Ds;n  35.3491 1.57 x 1073 - (3.3 x 10%)

Dy, —D7/2  25.9882 2.13 x 1073 - (2.2 x 10°)
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HIl21 cm

nz/ny ~ 3 Schematic of the hyperfine
6peV T | @@ transition of the ground
! p € electronic state of hydrogen,
: due to the spin flip from parallel
: 21 cm, 1.42 GHz to anti-parallel alignment of the

proton-electron pair.

§

1/A21 ~ 11 Myr

ool 3

p €

An atom will typically remain in the excited state for about 11 Myr before decaying. This 1s much
greater than the collisional time between atoms 1n an H I gas. Thus the two hyperfine states are
in collisional equilibrium and the level populations are in a Boltzmann distribution with
excitation temperature equal to the kinetic temperature of the gas, 1., = 1,

Here, g, = 1 and g, = 3.
"2 92 —BExn/kT | g E,/k = 0.07 K is much smaller than ISM temperatures (and the
ni g temperature of the cosmic background radiation (7-yg =~ 3 K).

Therefore, the exponential term is near unity.
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[Line diagnostics]

e The Three-Level Atom (Line diagnostics)

- Let Cj; be the collision rate (C;; = n. ki s'!) between any two levels. The equations of statistical

equilibrium for a three level atom are N

Al ? g3

E,; AVAVAVAV: ZLiv:
N1C13 + N2Caz = N3 (C31 + Cs2 + Az + Az1) |
N1C12 + N3 (Cs2 + Asz) = Na (Ca3 + Ca1 + Az1) Eqz. N2 |y g, o i
N1+ Nog+ N3 =1 |
Eq; e hv,2
N1
- Electron temperature v Y V5

4+ lons in which E1» ~ E»;3

4+ In the low density limit, collisional de-excitation of the excited levels can be ignored. Therefore,
C31~C3~0.

Also, because of the increasing threshold energies to excite each level, N3 < Ny < N1 so that the
equations are reduced to

N,Ci3
Nao =
’ (Ass + Asq)
N, — N1Cio

A21
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If we now form the line intensity ratio for the 3 — 2 and 2 — 1 transitions, we have

F35  E23N3As

Fy1 FE1aNy A

- Pas AsnChs collisional rate coefficients for excitation
F19 (A3 + As1) Cro

_ EazAsakis ks = T?/Q s g kT
Fi9A31k1o < 5 5112

_ Bz Aseihs oxp (_@) k12 = s ;e—Ezl/kT
F12A31 12 kT

provided that A3> is very much less than As;.

Because this line ratio depends on the temperature, it can be used to measure the electron
temperature in the plasma.



Temperature

Use two levels with different excitation energy.

Ol
: ) [OIll]
l So 1000 (1(4959)+1(5007))/1(4363)
4363i
i 2321 100:—
5 0,
5007!
14939 10 . ‘ ‘ L ‘ ‘ . ‘ \ L ‘ ‘ L ‘ L
. 5000 10000 15000 20000 25000
Lo T(K)
Y 1(4959 + 5007) _ 7.7exp(—3.29 X 104/T)
: °p 1(4364) 1+4.5 x 10~4n,T—1/2
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- Electron density N3 g,
A T A |
4+ Ions in which £23 < Ej5 |E23 " N Y &, AVAVAVAY: 2 L7

4+ In low density limit,

T
||
we can neglect collisional induced transitions !
B3| 1 AVAVAVAV. 2 UF
between the higher levels. : : :
12
|
| |
| AVAVAVAV. 4.
N1Ch3 = N3Az; : : N # 12
N1C19 = Ny Ao v ! - 1 \R-$

= = ~ exp

Fs1  EzAsiNg 31013 (s ( E21> Q31 g3
Fy1  E31A1Ns Eo1Cio Qo

using the quantum-mechanical sum rule for collision strengths.

4+ In high density limit, the upper levels are populated according to their Boltzmann ratios,

F31 Bz AsiNg  Aszigs . N3 _gs _Fam
Fo1 E21 A1 N> A2igo No  go
4+ Therefore, the line ratio can be used as density diagnostics in the regime between the critical
densities for de-excitation of each of the transitions.



Density

Choose atom with two levels with almost same excitation energy.

0 I [Oll]
3/2 2 1.5 |
12 } . D (3729)/1(3726) |
I I j
I |
I | B
| ! 1.0—
| | i
3726 ! I
| 13729 i
I : 05 -
I | -
I I - _
I | i |
I |
I I 00~ |
' ! *s 10° 10° 10* 10

312 n, (cm’)
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[Absorption Coefficient in terms of Einstein coefficients]

The Einstein coefficients are useful means of analyzing absorption and emission processes.
However, we often find it even more useful to use cross section because the cross section has a
natural geometric meaning.

(pure) Absorption cross section:

- The number density of photons per unit frequency interval is uy/hv = (4 /c)Jy [hv et
0y = 009v be the cross section for absorption of photons for the transition £ — w. Then, the
absorption rate 1s

l Oy — O-Ogbz/

dn,, 47, 47 i
— d . ~ T d z]]/ v — J B UJ
( = )E_m ng/ Vo hu W/woao/ vd,o W_huogo = nyBy

- Here, we assumed that J, does not vary appreciably over the line profile of the cross section.
Therefore, we derive a simple relation between the absorption cross section and the Einstein B
coefficient:

4 hVo
—o09 =By, — 00=—DBu
huogo 4 o) p. 14

- If the cross section has a normalized profile of ¢, , we can write the absorption cross section
as follows:

hV()

o, = — By, ¢, with /¢,,dy =1
4
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[Einstein Coefficients and Oscillator Strengths]

e Recall resonance scattering cross-section and the Einstein relations:

B u — uBu
” (V) _ Te2 7/4772 g1 D g 31 ' B E, — E
Y me (v —vg)? + (v/4m)? A, = Qthu B., where Vi, = 5 (v0)
C

Lorentz profile

* The Einstein (absorption) B coefficient associated with a classical oscillator can be defined in
terms of the total energy extracted from a beam of radiation.

2

o0
Te ) )
_ classica classical
/ o (v)dv = — = By, — By —
0 mc 47 hvy, mc

2

Lhugy 47 Te

It 1s convenient to define the absorption and emission oscillator strengths ( /i, and f,; ) by the
formulae:

: 472 e? 472 e?
classical

Blu — Blu flu — flu Bul

hv,mc

= fur (note that vy = —vy, < 0 and fy; < 0)
Vul

The oscillator strength (or f value) is the factor which corrects the classical result. The quantum
mechanical process can be interpreted as being due to a (fractional) number f of equivalent
classical electron oscillators of the same frequency.
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* In quantum mechanics, the absorption oscillator strength i1s given by

2m 2
flu — W (Eu — El) Z ’dlu’ dlu = <¢u |€I'| ¢l>

where the sum is over all substates of the upper and lower levels.

We also have the following relations.

glflu — _guful J(V) — e flu
2
87‘(‘2621/5 87T2€2V2u _ e U
guAul = — mc3 lguful — mc3l glflu mc flu(,b< )

o Thomas-Reiche-Kuhn sum rule

Z funs = N = total number of electrons in the atom
n/

Here, the summation is over all states of the atom. Where there 1s a close shell and a smaller number
q of electrons outside the closed shells that are involved in a more limited set of transitions, we also

have
ann’ — (g

where the sum is now only over those states involve transitions of these outer electrons.

We note that f~ 1 for strong allowed transitions.
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[Line Broadening Mechanisms]

e Atomic levels are not infinitely sharp, nor are the lines connecting them.

(1) Doppler Broadening
(2) Natural Broadening

(3) Collisional Broadening
Doppler Broadening

The simplest mechanism for line broadening is the Doppler effect. An atom is in thermal motion,
so that the frequency of emission or absorption in its own rest frame corresponds to a different
frequency for an observer.

Each atom has its own Doppler shift, so that the net effect 1s to spread the line out, but not to
change its total strength.

The change in frequency associated with an atom with velocity component v, along the line of
sight (say, z axis) is, to lowest order in v/c, given by

Uz
V —1Vyg = 1Vyg—
C

v 1 VoV,
£t - = ~ ]_ — =
Doppler shift: 7o v (1= Beosd) — vy (l+pfcosl) — v—1uw .

Here, v, i1s the rest-frame frequency.



The number of atoms having velocities in the range (v., v, + dv) 1s proportional to

2

m \1/2 muv:
f(vz)dv: = (27rkT) =P <_ QkT) dv:

From the Doppler shift formula, we have

— cdv
Vy, — C(VV VO) — d’Uz = V—
0 0

Therefore, the strength of the emission 1s proportional to

2

20 )2
exp (—ZZ};) dv, X exp [— me Q(L/QkTVO) ] dv
0

Then, the normalized profile function is

o (v) ! e~ (v=10)*/(AvD)*  where Avp = @vth is the Doppler width.
c

B AVDﬁ
| 2KT
Vth = {/ —— 1is the thermal velocity.
m




The line-center cross section for each atom, neglecting stimulated emission, is therefore

hv 1 hvg _ 1
Ovo = Bmﬂqb(yo) - Avp/m 4n Biz = 9] = Avpy/T
et ]
C 12 AVDﬁ

In addition to thermal motions, there can be turbulent velocities associated with macroscopic
velocity fields. When the scale of the turbulence is small in comparison with a mean free
path (microturbulence), the turbulent motions are accounted for by an effective Doppler width.

2T 1/2
AVD = VO ( + UEUI‘b)

C m

where v,,4, 18 a root-mean-square measure of the turbulent velocities. This assumes that the
turbulent velocities also have a Gaussian distribution.

........................................................................................................................................................................................................................................

. The convolution of two Gaussian functions with the widths (standard deviations) ¢, and o, is
. a Gaussian function with the width of o, given by:
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e Natural Broadening

A certain width to the atomic level 1s implied by the uncertainty principle, namely, that the spread
in energy AF and the duration At 1n the state must satisfy AEAt ~ h.

The spontaneous decay of an atomic state n proceeds at a rate of the damping parameter
(Einstein A coefficient for the spontaneous emission), which is the reciprocal of the mean
lifetime of the upper state,

7:Au€

where u and £ denote the upper and lower states, respectively.

The coefficient of the wave function of state n is of the form 72 and then the energy decays
proportional to e7t. We then have an emitted spectrum determined by the decaying sinusoid type

of electric field. The spectral profile is of the form, which is called a Lorentz (or natural, or
Cauchy) profile,

The above profile applies to cases in which only the upper state 1s broadened (no broadening in
the lower state).



26

Semiclassical (Weissokpf-Woolley) Picture of Quantum Levels

» In the semiclassical picture, each level 1s viewed as a continuous distribution of sublevels with
energies close to the energy of the level (E)).

The distribution of sublevels are explained by the Heisenberg Uncertainty Principle. The level has a
lifetime At = 1/A (A = Einstein A coefficient) and a spread in energy about AE =~ h/At = hA.

2
AEAt ~ h =
2
- The ground level has no spread in energy
because Af = oo. Y1
- The atom 1s in a definite sublevel of some level.
- no spread

9

- A transition in a spectral line is considered to be an instantaneous transition between a definite sublevel
of an 1nitial level to a definite sublevel of a final level.

- The energy spread of sublevels is described by a Lorentzian profile with the damping parameter of
y = A.

- This picture implies that the emission line profile is the same as the absorption line profile.
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If both the upper and lower state are broadened, then the line profile 1s the convolution of two
Lorentz profiles, which 1s another Lorentz profile with y = y, + 7;.

Y=72tN Note that y; = 0 if the lower state is the ground state.

where y, and y, are the widths of the upper and lower states involved in the transition.

The longer an excited state exists, the narrower the line width so that metastable states can have
very narrow lines (if the thermal Doppler broadening is not important). In general, the damping
parameter 1s given by

Y= Z Ay

where the sum is over all states n’ of lower energy.

The semiclassical picture postulates that in the process of photon scattering, an atom stays in a
given sublevel unless there are elastic collisions that cause a transitions to a different sublevel.
Thus if there are no elastic collisions, the next transition starts from the same sublevel where the
previous transtion ended.
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Collisional Broadening (by elastic collision)
The Lorentz profile applies even to certain types of collisional broadening mechanisms.

If the atom suffers collisions with other particles while it is emitting, the phase of the emitted radiation can
be altered suddenly. If the phase changes completely randomly at the collision times, then information
about the emitting frequencies is lost.

If the collisions occur with frequency vco , that is, each atom experiences Vo collisions per unit time on

the average, then the profile is

I /4m?
(v —wp)? + (I'/4m)?

ANYA A YA N
\VARVARVARV.

/\ f\ /\ /\ /\ / random phase interruptions
\ \/ / \/ \/ by atomic collisions

1 o

Collisions dominate in high density
environments.

P(v) =

where I'= v 4 2v¢q

For derivation of the above formula, see Problem 10.7 of Rybiki & Lightman and Chapter 9 of Atomic Spectroscopy and Radiative
Processes [Degl’Innocenti].
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e Combined Doppler (Gaussian) and Lorentz Profiles

Atoms shows both a Lorentz profile plus the Doppler etfect. In this case, we can write the profile
as an average of the Lorentz profile over the various velocity states of the atom:

T fo)
) = 472 / (v — V6)2 + (F/47T)2d :

Here, f(v,) is the Maxwell velocity distribution and v is the line center in the rest frame of the
atom with a velocity v,.

vy =1y + vg (v, /c)

m /2 mu? .
flv,) = (27TkT> exp | — 5 Here, m is the hydrogen mass.

Therefore,

() I /OO (m/2mkT)/? exp (—mvﬁ/QkT) 0

S 4m? ) (v = vo(1 4 0./0))? + (T /47)?
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Changing the variable in integration to y = mz)z2 /2kT, the profile can be written using the Voigt function.

vV — 1)
U =
AI/D
I
a =
47TAI/D
o 2kT
Vp —
C m

0.30 7]

0.25

0.10 -
0.05 -

0.00

0.20 -

0.15

—6=1.53 y=0.00
—6=130 y=0.50

6=1.00 y=1.00
—6=0.00 y=1.80

The ‘“core” of the line is dominated by the Doppler (Gaussian) profile, whereas the ‘“wings’’ are

dominated by the Lorentz profile.




31

Rayleigh and Raman Scattering

Rayleigh scattering and Raman scattering by atoms and molecules affect radiation over a wide range of frequencies.

These processes are very efficient when the frequency of an incident photon is close to resonance with a bound-
bound transition in the scattering center.

In Rayleigh scattering, an incident photon raises a bound electron from an eigenstate of the scattering center to an
intermediate state (that is not an eigenstate of the system), followed by the direct return of the electron to the original
eigenstate with the release of a photon of the same frequency as the input photon. Like Thomson scattering, Rayleigh

scattering is coherent.

In Raman scattering, an incident photon raises an electron from an eigenstate of the scattering center to an
intermediate state followed by a jump of the electron to a different eigenstate of the system, along with the release of
a photon having a frequency different from that of the input photon. Unlike Thomson and Rayleigh scattering,

Raman scattering is noncoherent.

Examples of (a) Rayleigh scattering and

Es 3
L (b) Raman scattering. Solid lines are

energy eigenstates of the scattering
center. Dashed lines are intermediate

= E2 states that are not eigenstates of the

—_ system.

[Hubeny & Mihala] Theory of Stellar Atmosphere
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(@) Rayleigh scattering (b) Raman scattering



