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Introduction
• Temperature 

- The temperature in a static nebula is determined by the balance between (1) heating by 
photoionization and (2) cooling by recombination and by collisional excitation emission 
from the nebula. 

• Energy gain and loss 
- [Gain] When a photon of energy  is absorbed, an electron (photoelectron) is created, having 

an energy . The electrons produced are rapidly thermalized (see Chap. 2). 

- In ionization equilibrium, the photoionizations are balanced by an equal number of 
recombinations. 

- [Loss] In each recombination, a thermal electron with energy  disappears. An average of 

this quantity over all recombinations represents the mean energy that “disappears” per 
recombination. 

- The difference between the mean energy of a newly created electron and the mean energy of a 
recombining electron represents the net gain in energy per ionization process. 

- [Loss] In equilibrium, this net energy gain is balanced by the energy lost by radiation, 
predominantly by electron collisional excitation of bound levels of abundant ions. 

- [Loss] Free-free emission (bremsstrahlung) is another, less important radiative energy-loss 
mechanism.
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Energy Gain by Photoionizaiton
• In a pure H nebula, at any specific location in the nebula, the energy gain (per unit 

volume per unit time) is 

• In ionization equilibrium, 

• Then, the gain can be expressed as follows: 

• The mean energy of a newly created photoelectron depends on the form of the ionizing 
radiation field, but not on the absolute strength of the radiation.
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• For a blackbody spectrum , the initial temperature  when . 

• At larger distances from the star, the spectrum of the ionizing radiation is attenuated by 
absorption in the nebula. 

• The higher-energy photons penetrate further into the gas, and the mean energy of the 
photoelectrons produced at larger optical depths from the star is higher.

Jν = Bν(T*) Ti ≈ T* kT* < hν0

4
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Table 3.1 
Mean input energy of photoelectrons 

Model stellar atmosphere 

T* (K) 

3.0 X 104 

3.5 X 104 

4.0 X 104 

5.0 X 104 

To =0 

1.58 X 104 

2.08 X 104 

2.48 X 104 

3.33 X 104 

To= I 

1.87 X 104 

2.48 X 104 

3.01 X 104 

4.12 X 104 

T; (K) 

To= 5 

3.36 X 104 

4.24 X 104 

5.48 X 104 

7.50 X 104 

To= 10 

5.02 X 104 

5.94 X 104 

8.15 X 104 

10.60 X 104 

Furthermore, since the nebula is in ionization equilibrium, we may eliminate n(H 0) 

by substituting Equation (2.8), giving 

(3.2) 

From this equation it can be seen that the mean energy of a newlyr created pho-
toelectron depends on the form of the ionizing radiation field, but not on the ab-
solute strength of the radiation. The rate of creation of photoelectrons depends on 
the strength of the radiation field, or, as Equation (3.2) shows, on the recombi-
nation rate. The quantity ~kT; represents the initial temperature of the newly cre-
ated photoelectrons. For assumed blackbody spectra with Iv= Bv(T*), it is easy 
to show that T; T* so long as kT* < hv0 . For any known Iv (for instance, the 
emergent spectrum from a model atmosphere), the integration can be carried out 
numerically; a short list of representative values of T; is given in Table 3.1. Note 
that the second column in the table, To = 0, corresponds to photoionization by the 
emergent model-atmosphere spectrum. At larger distances from the star, the spec-
trum of the ionizing radiation is modified by absorption in the nebula, the radiation 
nearest the series limit being most strongly attenuated because of the frequency de-
pendence of the absorption coefficient. Therefore, the higher-energy photons pen-
etrate further into the gas, and the mean energy of the photoelectrons produced at 
larger optical depths from the star is higher. This effect is shown for a pure H neb-
ula in the columns labeled with values of To, the optical depth at the ionization 
limit. 



Energy Loss by Recombination
• The kinetic energy lost by the electron gas (per unit volume per unit time) in recombination is 

-  is thus effectively a kinetic energy averaged recombination coefficient. 

• Coulomb focusing effect: the cross sections are approximately proportional to . 

• Since the recombination cross sections are approximately proportional to , the electrons of 
lower kinetic energy are preferentially captured, and the mean energy of the captured 

electrons is somewhat less than . 

• In a pure H nebula that had no radiation losses, the thermal equilibrium equation would be 
 because of the “heating” due to the preferential capture of the slower electrons. 
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∞
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• On-the-spot approximation: 
- The radiation field  should include the diffuse radiation as well as the stellar radiation modified by 

absorption ( ). 

- Every emission of an ionizing photon during a recombination to the level  is assumed to be 
balanced by absorption of the same photon at a nearby spot in the nebula. 

- Thus production of photons by the diffuse radiation field and recombination to the ground level is 
simply omitted from the gain and loss rates. Then, the equations are 

- The OTS approximation is not as accurate for the equilibrium as it is in the ionization equation, because 
of the fairly large difference in  between the ionizing photons in the stellar and diffuse 
radiation fields.

Jν
e−τν

n = 1

h(ν − ν0)
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∞
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• Inclusion of He and heavy elements 
- Including He in the heating and recombination cooling rates is straightforward: 

- The heating and recombination cooling rates are proportional to the densities of the ions 
involved, so the contributions of the heavy elements, which are much less abundant than H 
and He, can be negligible compared to those of H and He.
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G = G(H) + G(He)

G(He) = nen(He+)αA(He0, T )
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Energy Loss by Free-Free Radiation
• Free-free radiation, in which a continuous 

spectrum is emitted, is a minor contributor 
to the cooling rate. 
- The cooling rate by ions of charge Z, 

integrated over all frequencies is 
approximately: 

- The numerical values of the mean Gaunt 
factor for free-free emission is a slowly 
varying function of  and . For nebular 
conditions in the range .

ne T
1.0 < gff < 1.5

8

LFF(Z) = 4πjff

=
25πe6Z2

33/2hmc3 ( 2πkT
m )

1/2

gff nen+ [erg cm−3 s−1]

= 1.42 × 10−27Z2T1/2gff nen+ [erg cm−3 s−1]

n+ ≈ np + n(He+) the number density of the ions

van Hoof et al. (2014, MNRAS, 444, 420)
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Determination of the free–free Gaunt factor 425

temperature Te = 10 000 K, the longest wavelength that can be
modelled with the S98 data is ∼1.44 cm. Radio observations at
longer wavelengths are routinely made and CLOUDY should be able
to model those. In the view of the stated facts, we have used a much
larger parameter space in our calculations: 10log γ 2 = −6(0.2)10
and 10log u = −16(0.2)13. This is larger even than the current needs
of CLOUDY and anticipates possible future modifications to the code,
such as the addition of higher-Z elements and/or lowering the low-
frequency cut-off.

The integration shown in equation (22) is carried out using an
adaptive step-size algorithm based on equation 4.1.20 of Press et al.
(1992) for carrying out a single step. This algorithm is open at
the left-hand side, thus avoiding the awkward evaluation of the
integrand at x = 0. During the evaluation of the integral, at every
step an estimate is made of the remainder of the integral to infinity
by assuming that gff is constant. This estimate is reasonable as gff

is only slowly increasing. The integration is terminated when this
estimate is less than 1 per cent of the requested tolerance. The
requested tolerance of the thermally averaged Gaunt factor is a free
parameter and the routine calculates an estimate of the actual error
in the final result taking into account both the imprecisions due to
the finite step-size and the error in the non-averaged Gaunt factor.
For the electronic table, we used a requested relative tolerance of
10−5. The data are presented in Fig. 2 and Table 3. The data can
also be downloaded in electronic form (see Section 5). Note that
the data shown in Table 3 were calculated to a higher precision to
assure that all numbers shown are correctly rounded. In addition
to the electronic table, we also provide simple programs which
allow the user to interpolate the table. Testing of the interpolation
algorithm showed that the relative error was less than 1.5 × 10−4

everywhere.
Comparing our results with those of S98, we noted the serious

problem that the parameters 10log γ 2 and 10log u were transposed
in table 2 of S98, as well as in the electronic version of that table.
After correcting for this error, there were some minor discrepancies
when we compared the numerical values in the electronic table of
S98 to our results. The largest relative error is for 10log γ 2 = −1.8
and 10log u = 0.5 and amounts to almost 0.13 per cent. The median
relative discrepancy is approximately 5 × 10−5. So it appears that
the discrepancies we reported in Section 2.4 did not have a sig-
nificant impact on the calculation of the thermally averaged Gaunt
factor by S98.
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For completeness we will also include a calculation of the total
free–free Gaunt factor which is integrated over frequency. This
quantity is useful if one wants to calculate the total cooling due
to Bremsstrahlung without spectrally resolving the process. The
formula for this quantity is given by KL61 and S98

⟨gff (γ 2)⟩ =
∫ ∞

0
e−u⟨gff (γ 2, u)⟩du. (23)

Due to the similarity of the integrals in equations (22) and (23), we
can use the same adaptive step-size algorithm discussed in Section 3
to calculate the data. For the evaluations of ⟨gff(γ 2, u)⟩, we used a
relative tolerance of 10−6 to prevent them dominating the error in
⟨gff(γ 2)⟩. The results are shown in Table 4 and Fig. 3. The computed
values are also available in electronic form (see Section 5). The data
in Table 4 show a small systematic offset w.r.t. the data in table 3 of
S98, ranging between +0.000 69 for 10log γ 2 = −4 and +0.000 21
for 10log γ 2 = 4. This offset is likely due to the missing part of the

Figure 2. The base-10 logarithm of the thermally averaged free–free Gaunt
factor as a function of u (top panel) and γ 2 (bottom panel). Thick curves are
labelled with the values of 10log γ 2 (top panel) and 10log u (bottom panel)
in increments of 5 dex. The thin curves have a spacing of 1 dex. In the top
panel the Gaunt factors approach a limiting curve for 10log γ 2 < −2 and are
indistinguishable in the plot.

integral below u = 10−4 in S98. The extended range in γ 2 of the
data presented here makes the limiting behaviour of the function
clear. Both for γ 2 → 0 and γ 2 → ∞ the function approaches an
asymptotic value. Using our data, we determined the following fits
to the limiting behaviour of the function:

⟨gff (γ 2)⟩ ≈ 1.102 635 + 1.186γ + 0.86γ 2 for γ 2 < 10−6, (24)

and

⟨gff (γ 2)⟩ ≈ 1 + γ −2/3 for γ 2 > 1010. (25)

These extrapolations are expected to reach a relative precision of
10−5 or better everywhere they are defined. The data in Table 4 can
be interpolated using rational functions

⟨gff (g)⟩ ≈ a0 + a1g + a2g
2 + a3g

3 + a4g
4

b0 + b1g + b2g2 + b3g3 + b4g4
, (26)

where g = 10log γ 2. To limit the degree of the rational function, we
made two separate fits for the range −6 ≤ g ≤ 0.8 and 0.8 ≤ g ≤ 10.
These fits achieve a relative error less than 3.5 × 10−5 every-
where in its range for the first fit and 8.8 × 10−5 for the sec-
ond. The coefficients are given in Table 5. We have implemented

MNRAS 444, 420–428 (2014)
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Energy Loss by Collisionally Excited Line Radiation
• Collisional excitation of low-lying energy levels of common ions, such as , , and 

, are the predominant source of radiative cooling. 
- These ions make a significant contribution in spite of their low abundance because they have 

energy levels with excitation potentials of the order of . 
- However, all the levels of H and He have much higher excitation potentials, and therefore are 

usually not important as collisionally excited coolants. 

• Cross section for excitation 
-  is a function of electron velocity  and is zero below the threshold . 

- The main dependence of the excitation cross section is  because of the focusing effect 
of the Coulomb force. 

• Focusing effect of the Coulomb force 
- https://casper.astro.berkeley.edu/astrobaki/index.php/Coulomb_Focusing 
- https://www.youtube.com/watch?v=LXGBGNR5JxI&ab_channel=AaronParsons

O+ O++

N+

kT

σ12(u) u χ = hν21

σ ∝ u−2

9

https://casper.astro.berkeley.edu/astrobaki/index.php/Coulomb_Focusing
https://www.youtube.com/watch?v=LXGBGNR5JxI&ab_channel=AaronParsons


Collisional Excitation & De-excitation
• Collisional Rate (Two Level Atom) 

‣ The cross section    for collisional excitation from a lower level  1  to an upper level  2  is, in 
general, inversely proportional to the impact energy (or ) above the energy threshold   and is zero 
below. 

‣ It is convenient to express the collisional cross section in the following form using a dimensionless 
quantity called the (dimensionless) collision strength  : 

‣ The collision strength    is a function of electron velocity (or energy) but is often approximately 
constant near the threshold. Here,  and  are the statistical weights of the lower and upper levels, 
respectively.

v2
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‣ Advantage of using the collision strength is that (1) it removes the primary energy dependence for 
most atomic transitions and (2) they have the symmetry between the upper and the lower states. 
The principle of detailed balance states that in thermodynamic equilibrium each microscopic process is 
balanced by its inverse. 

Here,   and   are related by   , and   is a Maxwell velocity distribution of 

electrons. Using the Boltzmann equation of thermodynamic equilibrium, 

we derive the following relation between the cross-sections for excitation and de-excitation are 

and the symmetry of the collision strength between levels. 

These two relations were derived in the TE condition. However, the cross-sections are independent on the 
assumptions, and thus the above relations should be always satisfied.

υ1 υ2
1
2

meυ2
1 =

1
2

meυ2
2 + E21 f (υ)
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where



‣ Collisional excitation and de-excitation rates 

The collisional de-excitation rate per unit volume per unit time, which is thermally averaged, is 

and the collisional excitation rate per unit volume per unit time is 

Here,    and    are the collisional rate coefficient for excitation and de-excitation coefficients in 
units of cm3 s-1, respectively. We also note that the rate coefficients for collisional excitation and 
de-excitation are related by

q21 q12

12

effective collision strength:



• Collision Strength 
- Quantum mechanical calculations 

show that (1) the resonance structure 
in the collision strengths is important 
and (2) the collision strength increases 
with energy for neutral species. 

- The effect of the resonances tends to 
be averaged out.

13
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Fig. 3.2. Computed variation of the collision strength for an ionized and a neutral 
species (after Tayal, 1996 and Badnell, 1999) 

G(x) = A +exp(x) (Bx - Ox2 + Dx3 + E) El(X) + (0 + D) X - Dx2. (3.8) 

However, for simple approximate purposes, a temperature averaged Gaunt 
factor can be substituted in (3.7) to give . 

rlij = 87r v'3 Eij 9 Iij , 
(3.9) 

where IH is the ionization potential of hydrogen. 

3.1.1 Limiting Cases 

Let us now consider some important limiting cases of the two-level atom. 
First, in the low density limit, the collisional rate between atoms and electrons 
is much slower than the radiative deexcitation rate of the excited level. Thus 
we can balance the collisional feeding into level 2, given by (3.3) by the rate 
of radiative transitions back down to level 1; R12 = A 21 N2, where A21 is the 
radiative transition probability downwards. Balancing these two rates gives 

0!12 
N2 = n e N 1 -A 

21 

_ N (3A- 1T- 1/ 2 (rl12) (-E12) -3 - ne 1 21 gl exp kT cm, 

(3.10) 

Tayal (1996) Badnell (1999)
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Figure 5.21 

0.8 

Collisional strength for the 3s23 p 3 4 S0 - 3s23 p 3 2 P 0 transition of S II. The solid line is the caiculation 
of Ramsbottom et al. (1996, At. Data Nucl. Data Tables, 63, 57) and the dashed line is by Cai and 
Pradhan (1993, ApJS, 88, 329). 

provided one of the states (i or j) is a singlet (S = 0 or L = 0). 
The collisional strengths consist of resonances that vary rapidly with energy 

(see Figs. 5.21 and 5.22). However, in astrophysical situations where the colliding 
electrons have a range of energies, the effects of the resonances are averaged out. 
The collisional excitation rate for an ensemble of electrons at temperature Te can be 
obtained by averaging over the Maxwellian distribution: 

C1;(Te) = ['"' va 1i(v)f(v) dv, 
lvmin 

(5.120) 

where Vmin = (2E; 1/ me) 112 . Substituting eq. 5.118 into eq. 5.120, we have 

C 8.629 X 10- 6 Qji -E -/kT 3 -1 
ji = . 1/2 e lj e cm S • 

Te gi 
(5.121) 

S II

solid - Ramsbottom et al. (1996) 
dashed - Cai & Pradhan (1993)

The effective collision strength, which is 
thermally averaged, has a value in a range of

See Table F.1 to F.5 in [Draine]



• Averaged collision strengths
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The total collisional deexcitation rate per unit volume per unit time is 

(3.18) 

where Y(l, 2) is the velocity-averaged collision strength 

Y(l, 2) = LXJ Q(l, 2; E) exp(-E/kT) d (k~) (3.19) 

with E = ½mu~. Likewise, the collisional excitation rate per unit volume per unit time 
is nen 1q12, where 

_ 8.629 x 10- 6 Y(l, 2) (- /kT) [ 3 -1] - 112 exp x cm s 
T W1 

(3.20) 

The collision strengths must be calculated quantum-mechanically, and some of 
the most important numerical values are listed in Tables 3 .3 through 3. 7. Each collision 
strength in general consists of a part that varies slowly with energy, on which, in 
many cases, there are superimposed resonance contributions that vary rapidly with 
energy; but when the cross sections are integrated over a Maxwellian distribution, 
as in almost all astrophysical applications, the effect of the exact positions of the 
resonances tends to be averaged out. The resulting averaged collision strengths, 
calculated from Equation (3.19), are given in Tables 3.3 to 3.7, evaluated at T = 
10,000 K, a representative nebular temperature. It is convenient to remember that, 

Table 3.3 
Collision strengths Y for 2S- 2P 0 transitions in Li-like 2s and Na-like 3s ions 

Ion 2s 2S, 2p 2P 0 

c+3 8.91 
N+4 6.81 
o+s 5.21 

Cochrane, D. M., & McWhirter, R. W. P. 1983, PhyS, 28, 25. 
McWhirter, R. W. P. 1994, ADNDT, 57, 39. 

Ion 3s 2so, 3p 2po 

16.9 
16.0 
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Table 3.4 
Collision strengths Y for 2S - 3 P0 transitions in Be-like 2s2 and Mg-like 3s2 ions 

Ion IS, 3po 3pg, 3p1 3pg, 3pf 3pf, 3pf 

c+2 1.05 0.96 0.72 2.78 
N+3 1.07 1.14 0.83 3.29 
oH 0.82 0.67 0.65 2.32 
AI+ 1 3.35 1.89 1.94 6.72 
si+ 2 5.56 1.81 3.62 10.4 
s+4 1.9 

c+ 2 Berrington, K. A., Burke, P. G., Dufton, P. L., & Kingston, A. E. 1985, ADNDT, 33, 195; N+ 3, o+ 4 

Ramsbottom, C. A., Berrington, K. A., Hibbert, A., & Bell, K. L. 1994, Physica Scripta, 50,246; o+4 McKenna, 
R. C., eta!. 1997, ApJ, 486,571; A1+1 Aggarwal, K. M., & Keenan, F. P. 1998, J. PhysB, 31, 4545, and Aggarwal, 
K. M., & Keenan, F. P. 1994, J. Phys. B, 27, 5321; Si+ 2 Dufton, P. L., & Kingston, A. E. 1994, ADNDT, 57,273; 
s+ 4 Dufton, P. L., & Kingston, A. E. 1984, J. Phys. B, 17, 3321 (extrapolated). 

Table 3.5 
Collision strengths Y for B-like 2p, F-like 2p 5, Al-like 3p and Cl-like 3p 5 ions 

Ion !po I po 
1/2' 3/2 Ion !po 

1/2' 
lpo 

3/2 

c+ 2.15 Si+ 5.70 
N+2 1.45 s+3 8.54 
o+3 2.34 Ar+s 6.33 
Ne+ 5 3.21 
Ne+ 0.28 Ar+ 2.93 
Mg+3 0.36 ca+ 3 1.00 
Si+5 0.30 

B-like ions from Blum, R. D., & Pradhan, A. K. 1992, ApJS 80, 425; F-like ions from Saraph, H. E. & Tully, 
J. A. 1994, A&AS, 107, 29; Si+ Dufton, P. L., & Kingston, A. E. 1994, ADNDT, 57, 273, s+ 3 Tayal, S.S. 2000, 
ApJ, 530, 1091; Ar+ 5 Saraph, H. E., & Storey, P. J. 1996, A&AS, 115, 151; Ar+, ca+ 3 Pelan, J., & Berrington, 
K. A. 1995, A&AS, 110,209. 

for an electron with the mean energy at a typical nebular temperature, T 7,500 K, 
the cross sections for excitation and deexcitation are a~ 10- 15 Y /w cm2 . 

Note that there is a simple relation for the collision strengths between a term 
consisting of a single level and a term consisting of various levels, namely, 

Y(SLJ, S'L' J') = (2J' + l) Y(SL, S'L') 
(2S' + 1)(2L' + 1) 

(3.21) 
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Table 3.6 
Collision strengths Y for C-like 2p 2, O-like 2p 4, Si-like 3p2 and S-like 3p4 ions 

Ion 3p, 'D 3 P, 15 1D, 15 3 Po, 3 P, 3 Po, 3 P2 3 P1, 3 P2 3 P, 550 

N+ 2.64 0.29 0.83 0.41 0.27 1.12 1.27 
0+2 2.29 0.29 0.58 0.55 0.27 1.29 0.18 
Ne+ 4 2.09 0.25 0.58 1.41 1.81 5.83 1.51 
Ne+ 2 1.36 0.15 0.27 0.24 0.21 0.77 
5+2 6.95 1.18 1.38 3.98 1.31 7.87 2.85 
Ar+4 3.21 0.56 1.65 2.94 1.84 7.81 
Ar+ 2 4.83 0.84 1.22 1.26 0.67 3.09 

N+, 0+ 2, and Ne+4 from Lennon, D. J., & Burke, V. M. 1994, A&AS, 103, 273; Ne+ 2 from Butler, K., & 
Zeippen, C. J. 1994, A&AS, 108, I; s+ 2 from Tayal, S.S., and Gupta, G. P. 1999 ApJ 526, 544; Ar+ 2, Ar+4 

from Galavis, M. E., Mendoza, C., & Zeippen, C. J. 1995, A&AS, 111,347. 

Table 3.7 
Collision strengths Y for N-like 2p 3 and P-like 3p3 ions 

Ion 450, 2Do 450, 2po 2Do 
3/2' 

2Do 
5/2 

2Do 
3/2' 

2po 
1/2 

o+ 1.34 0.40 1.17 0.28 
Ne+ 3 1.40 0.47 1.36 0.34 
s+ 6.90 3.53 7.47 1.79 
Ar+3 1.90 1.18 7.06 1.51 

Ion 2Do 
3/2' 

2po 
3/2 

2Do 2po 
5/2' 1/2 

2Do 
3/2' 

2vo 
5/2 

2po 
1/2' 

2po 
3/2 

o+ 0.82 0.33 1.23 0.157 
Ne+3 0.51 0.37 0.90 0.34 
s+ 3.00 2.20 4.99 2.71 
Ar+3 2.14 1.53 7.06 2.07 

o+ Pradhan, A. K. 1976, MNRAS, 177, 31, 1998, and J Phys B, 31, 4317; Ne+3, Giles, K. 1981, MNRAS, 195, 
63, and Ramsbottom, C. A., Bell, K. L., & Keenan, F. P. 1998, MNRAS, 293, 233; s+ Ramsbottom, C. A., Bell, 
K. L., Stafford, R. P. 1996, ADNDT, 63, 57; Ar+ 3 Ramsbottom, C. A., & Bell, K. L. 1997, ADNDT, 66, 65. 

if either S = 0 or L = 0. The factors (21' + 1) and (2S' + 1)(2L' + 1) are the statistical 
weights of the level and of the term, respectively. On account of this relation, the rate 
of collisional excitation in p 2 or p4 ions (such as o++) from the ground 3 P term to 
the excited (singlet) 1 D and 1 S levels is very nearly independent of the distribution of 
ions among 3 P0, 3 P1, and 3 P2 . 
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if either S = 0 or L = 0. The factors (21' + 1) and (2S' + 1)(2L' + 1) are the statistical 
weights of the level and of the term, respectively. On account of this relation, the rate 
of collisional excitation in p 2 or p4 ions (such as o++) from the ground 3 P term to 
the excited (singlet) 1 D and 1 S levels is very nearly independent of the distribution of 
ions among 3 P0, 3 P1, and 3 P2 . 

It is convenient to remember that, for an electron with 
the mean energy at a typical nebular temperature 

, the cross sections for excitation and 
deexcitation are .
T ≈ 7,500 K

σ ≈ 10−5 ⟨Ω⟩/g cm2

See the CHIANTI atomic database for collision strengths. 
https://www.chiantidatabase.org/ 
https://chianti-atomic.github.io/

https://www.chiantidatabase.org/
https://chianti-atomic.github.io/


Sum rule for collision strengths
- Quantum mechanical sum rule for collision strengths for the case where one term consists of a 

singlet (S = 0  or  L = 0) and the second consists of a multiplet: the collision strength of each 
fine structure level J is related to the total collision strength of the multiplet by  

Here,  is the statistical weight of an individual level in the multiplet, and  is 
the statistical weight of the multiplet term. 

We can regard the collision strength as “shared” amongst these levels in proportion to the statistical 
weights of the individual levels . 

- The flux ratio between the lines in a multiplet is proportional to the ratio of their collision 
strengths, in a low density medium. Then, the flux ratio is determined by the ratio of their 
statistical weights. 
✦ C-like ions (                                                , such as O++ )  forbidden or inter combination transitions. 

ground states (triplet)     - 3P0  : 3P1 : 3P2 = 1 : 3 : 5 

excited states (singlets)  - 1D2, 1S1 

✦ Li-like ions (                                     , such as C+3  )   resonance transitions 

ground state (singlet)    - 2S1/2 

excited states (doublet) - 2P3/2  : 2P1/2  = 2 : 1

(2J′ + 1) (2S′ + 1)(2L′ + 1)

(gJ = 2J + 1)
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⌦(SLJ, S0L0J 0) =
(2J 0 + 1)

(2S0 + 1)(2L0 + 1)
⌦(SL, S0L0)
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Collisional Excitation Lines : mostly Forbidden Lines
• For all the low-lying levels of the ions in H II regions, the excited levels arise from the 

same electron configurations as the ground level. Radiative transitions between the 
excited levels and the ground level are forbidden by the electric-dipole selection rules. 
They occur by magnetic-dipole or electric-quadrupole transitions.
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Figure 4.6 [Ryden, Interstellar and Intergalactic Medium]
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with Auℓ = 8.22 s−1. This forbidden transition can occur only through the emis-
sion of two photons, with total energy hν′+hν′′ = 10.2 eV. Although the spectral
distribution of photons produced by this two-photon process peaks at 5.1 eV, it’s
a fairly broad peak, and photons are produced over the whole range 0 → 10.2 eV.
If you know enough about the temperature dependence of free–free, free–bound,
and two-photon emission, you can use the continuum emission from an ionized
nebula to estimate its temperature. However, since the emission lines of a nebula
rise above the continuum like skyscrapers above gently rolling plains, it is usually
easier to use the emission lines as a diagnostic of the nebula’s temperature.

The key to using emission lines to estimate temperature is finding two excited
states of the same ion whose energy differs by ∼ kT , where T is the temperature of
the gas. For nebulae with T ∼ 104 K, this implies energy differences #E ∼ 1 eV.
In practice, the lowest excited states of doubly ionized oxygen (O iii), singly
ionized nitrogen (N ii), and doubly ionized sulfur (S iii) are useful tools for
estimating the temperatures of H ii regions and planetary nebulae. The ions O iii,
N ii, and S iii have similar electronic structure; they are all four electrons short of
a filled outer shell. Thus, their lowest energy levels have a similar form, as shown
in Figure 4.6.

In each of these three ions, the ground state is compactly symbolized by the
term symbol 3PJ , with three fine-structure sub-levels corresponding to angular
momentum quantum number J = 0, 1, and 2. The first excited state of the ion is
symbolized as 1D; from this excited state, a leap to the J = 1 or J = 2 sub-level
of the ground state is a forbidden magnetic dipole transition, while the leap to the
J = 0 sub-level is a more strongly forbidden electric quadrupole transition.

Figure 4.6 Energy levels of the ions O iii, N ii, and S iii; the energy separations among
levels 0, 1, and 2 (typically #E ∼ 0.03 eV) are exaggerated for clarity.

1s2 2s2 2p6 3s2 3p21s2 2s2 2p2



Collisionally-Excited Emission Line 
• Emission line flux 

‣ In the low density limit, the collisional rate between atoms and electrons is much slower than the 
(spontaneous) radiative de-excitation rate of of the excited level. Thus, we can balance the 
collisional feeding into level  2  by the rate of radiative transition back down to level  1. The level 
population is determined by 

where   is the Einstein coefficient for spontaneous emission. The line emissivity is given by 

For low temperature, the exponential term dominates because few electrons have energy above the 
threshold for collisional excitation, so that the line rapidly fades with decreasing temperature. 

At high temperature, the    term controls the cooling rate, so the line fades slowly with 
increasing temperature.

A21

T�1/2

<latexit sha1_base64="7iuMRprvz26a7zJHpPlSaZE+rp8=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBi3W3VPRY8OKxQr+gXUs2zbah2WRNskJZ+ie8eFDEq3/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCopWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2Mb2d++4kqzaRomElM/QgPBQsZwcZKncZDeuFdVqb9Ysktu3OgVeJlpAQZ6v3iV28gSRJRYQjHWnc9NzZ+ipVhhNNpoZdoGmMyxkPatVTgiGo/nd87RWdWGaBQKlvCoLn6eyLFkdaTKLCdETYjvezNxP+8bmLCGz9lIk4MFWSxKEw4MhLNnkcDpigxfGIJJorZWxEZYYWJsREVbAje8surpFUpe9Xy1X21VKtmceThBE7hHDy4hhrcQR2aQIDDM7zCm/PovDjvzseiNedkM8fwB87nD+E/jy0=</latexit>

17

Here,



‣ In high-density limit, the level population are set by the Boltzmann equilibrium, and the line 
emissivity is 

Here, the line flux scales as    rather than  , but the line flux tends to a constant value at 
high temperature.

ne n2
e
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• In general, the equilibrium equation for the balance between the excitation and 
deexcitation rates of the excited level is 

• Then, the cooling rate is 

As , we obtain 

As , 

ne → 0

ne → ∞

19

This is the thermodynamic-equilibrium 
cooling rate.



• Most ions have more levels, and all ions with ground configurations , , or   have 
five low-lying levels.

p2 p3 p4
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Energy-level diagram for lowest terms of [O III], all from ground 2p 3 configuration, and 
for [N III] of the same isoelectronic sequence. Splitting of the ground 3 P term has been 
exaggerated for clarity. Emission lines in the optical region are indicated by dashed lines, and 
by solid lines in the infrared and ultraviolet. Only the strongest transitions are indicated. 

can be solved for the relative population in each level, and then for the collisionally 
excited radiative cooling rate 

Le= L n; L AiJhv;j [erg cm- 3 s- 1]. 
j<i 

(3.29) 

In the low-density limit, ne 0, this becomes a sum of terms like (3.22), but if 

neqij > L A;k 
k<i 

for any i, j, collisional deexcitation is not negligible and the complete solution must 
be used. In fact, for any level i, a critical density nc(i) may be defined as 

(3.30) 

A = 9.8⇥ 10�4

⌦ = 2.64⇥ (3/9)
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See Table 3.12  for A and 
Table 3.6 for Collision Strength
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Table 3.6 
Collision strengths Y for C-like 2p 2, O-like 2p 4, Si-like 3p2 and S-like 3p4 ions 

Ion 3p, 'D 3 P, 15 1D, 15 3 Po, 3 P, 3 Po, 3 P2 3 P1, 3 P2 3 P, 550 

N+ 2.64 0.29 0.83 0.41 0.27 1.12 1.27 
0+2 2.29 0.29 0.58 0.55 0.27 1.29 0.18 
Ne+ 4 2.09 0.25 0.58 1.41 1.81 5.83 1.51 
Ne+ 2 1.36 0.15 0.27 0.24 0.21 0.77 
5+2 6.95 1.18 1.38 3.98 1.31 7.87 2.85 
Ar+4 3.21 0.56 1.65 2.94 1.84 7.81 
Ar+ 2 4.83 0.84 1.22 1.26 0.67 3.09 

N+, 0+ 2, and Ne+4 from Lennon, D. J., & Burke, V. M. 1994, A&AS, 103, 273; Ne+ 2 from Butler, K., & 
Zeippen, C. J. 1994, A&AS, 108, I; s+ 2 from Tayal, S.S., and Gupta, G. P. 1999 ApJ 526, 544; Ar+ 2, Ar+4 

from Galavis, M. E., Mendoza, C., & Zeippen, C. J. 1995, A&AS, 111,347. 

Table 3.7 
Collision strengths Y for N-like 2p 3 and P-like 3p3 ions 

Ion 450, 2Do 450, 2po 2Do 
3/2' 

2Do 
5/2 

2Do 
3/2' 

2po 
1/2 

o+ 1.34 0.40 1.17 0.28 
Ne+ 3 1.40 0.47 1.36 0.34 
s+ 6.90 3.53 7.47 1.79 
Ar+3 1.90 1.18 7.06 1.51 

Ion 2Do 
3/2' 

2po 
3/2 

2Do 2po 
5/2' 1/2 

2Do 
3/2' 

2vo 
5/2 

2po 
1/2' 

2po 
3/2 

o+ 0.82 0.33 1.23 0.157 
Ne+3 0.51 0.37 0.90 0.34 
s+ 3.00 2.20 4.99 2.71 
Ar+3 2.14 1.53 7.06 2.07 

o+ Pradhan, A. K. 1976, MNRAS, 177, 31, 1998, and J Phys B, 31, 4317; Ne+3, Giles, K. 1981, MNRAS, 195, 
63, and Ramsbottom, C. A., Bell, K. L., & Keenan, F. P. 1998, MNRAS, 293, 233; s+ Ramsbottom, C. A., Bell, 
K. L., Stafford, R. P. 1996, ADNDT, 63, 57; Ar+ 3 Ramsbottom, C. A., & Bell, K. L. 1997, ADNDT, 66, 65. 

if either S = 0 or L = 0. The factors (21' + 1) and (2S' + 1)(2L' + 1) are the statistical 
weights of the level and of the term, respectively. On account of this relation, the rate 
of collisional excitation in p 2 or p4 ions (such as o++) from the ground 3 P term to 
the excited (singlet) 1 D and 1 S levels is very nearly independent of the distribution of 
ions among 3 P0, 3 P1, and 3 P2 . 

Table 3.6 Collision Strength



• The equilibrium equations for each of the levels  are given by 

which, together with the total number of ions 

can be solved for the relative population in each level. Then, the collisionally excited 
radiative cooling rate is

i
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• Critical density 
- For any , , collisional deexcitation is not negligible if 

- For any level , critical density is defined as the density where the radiative depopulation 
rate matches the collisional de-excitation for the excited state. 

- For , collisional deexcitation of level  is negligible, but for , it is 
important. 

- For a two level atomic system, the critical density is given by

i j

i

ne < nc(i) i ne > nc(i)

22



• As can be seen in Tables and the formula, collisional de-excitation is negligible for 
resonance and most forbidden lines in the ISM.

23

Collision strengths at T = 104 K 
Table 4.1 in The Interstellar Medium [Lequeux]

• However, it is not true for the 21 cm hyperfine 
structure line of hydrogen. 

- The critical density for 21cm line is 

- The hyperfine levels are thus essentially in 
collisional equilibrium in the CNM.

192 CHAPTER 17

Table 17.1 Critical Densities for Fine-Structure Excitation in H I Regions

nH,crit(u)
Eℓ/k Eu/k λuℓ T = 100K T = 5000K

Ion ℓ u (K) (K) (µm) ( cm−3) ( cm−3)

C II 2P o
1/2

2P o
3/2 0 91.21 157.74 2.0× 103 1.5× 103

C I 3P0
3P1 0 23.60 609.7 620 160

3P1
3P2 23.60 62.44 370.37 720 150

O I 3P2
3P1 0 227.71 63.185 2.5× 105 4.9× 104

3P1
3P0 227.71 326.57 145.53 2.3× 104 8.4× 103

Si II 2P o
1/2

2P o
3/2 0 413.28 34.814 1.0× 105 1.1× 104

Si I 3P0
3P1 0 110.95 129.68 4.8× 104 2.7× 104

3P1
3P2 110.95 321.07 68.473 9.9× 104 3.5× 104

including stimulated emission1:

ncrit,u(c) ≡
∑

ℓ<u [1 + (nγ)uℓ]Auℓ∑
ℓ<u kuℓ(c)

. (17.7)

Note that the definition (17.7) applies to multilevel systems, but each excited level
u may have a different critical density. The definition (17.7) is appropriate when
the gas is optically thin, so that the radiated photons can escape. When the emitting
gas is itself optically thick at the emission frequency, we have “radiative-trapping,”
and the criterion for the critical density must be modified (see Chapter 19).

Note that this definition of ncrit,u depends on the intensity of ambient radiation
at frequencies where level u can radiate. For many transitions of interest, we have
(n̄γ)uℓ ≪ 1, and this correction is unimportant, but for radio frequency transitions
– e.g., the 21-cm line of atomic hydrogen – it is important to include this correction
for stimulated emission.

Critical densities ncrit for the fine structure levels of C I, C II, O I, Si I, and Si II
are given in Table 17.1.

17.3 Example: H I Spin Temperature

Consider the ground state of the hydrogen atom (electron in the 1s orbital, electron
spin antiparallel to nuclear spin, g0 = 1), and the hyperfine excited state (1s orbital,
electron spin and nuclear spin parallel, g1 = 3). The energy level structure is
illustrated in Fig. 17.1.

The energy difference between the excited state (nuclear and electron spins par-
allel, g1 = 3) and the ground state (nuclear and electron spins antiparallel) is only
E10 = 5.87µeV, corresponding to a photon wavelength λ = 21.11 cm. The spon-
taneous decay rate is A10 = 2.884 × 10−15 s−1, corresponding to a lifetime of
∼ 107 yr.

1The definition of critical density is not completely standard. Some authors include collisional exci-
tation channels in the denominator of Eq. (17.7).

Table 17.1 in [Draine]
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Table 4.1. The most important forbidden lines in the interstellar medium. Only C i, C ii, O i,
Si ii, S ii, and Fe ii are present in the neutral medium. They are also present in the ionized
medium, but generally in smaller amounts than more ionized species. Wavelengths λ are
given in air for the visible transitions and in vacuum for the infrared/submillimetre ones.
The collision strengths Ωul (cf. (4.17)) are for collisions with electrons at a temperature of
104 K. The critical densities ncrit = Aul/⟨σulv⟩ (cf. (3.44)) correspond to collisions either
with electrons (for Te ≃ 104 K), or with H2 molecules when between round brackets (for
TK ≃ 100 K). The values of the atomic parameters are only indicative and should be checked
against the most recent sources. Some unobservable radiative transitions are not indicated, but
the corresponding collisional transitions cannot be neglected. This is the case for the transition
3P2−3P0 of O iii, with Ωul = 0.21, and for similar transitions in 3-level ions.

Ion Transition λ Aul Ωul ncrit
l–u µm s−1 cm−3

C i 3P0−3P1 609.1354 7.93 × 10−8 – (500)
3P1−3P2 370.4151 2.65 × 10−7 – (3000)

C ii 2P1/2−2P3/2 157.741 2.4 × 10−6 1.80 47 (3000)
N ii 3P0−3P1 205.3 2.07 × 10−6 0.41 41

3P1−3P2 121.889 7.46 × 10−6 1.38 256
3P2−1D2 0.65834 2.73 × 10−3 2.99 7700
3P1−1D2 0.65481 9.20 × 10−4 2.99 7700

N iii 2P1/2−2P3/2 57.317 4.8 × 10−5 1.2 1880
O i 3P2−3P1 63.184 8.95 × 10−5 – 2.3 × 104 (5 ×105)

3P1−3P0 145.525 1.7 × 10−5 – 3400 (1 × 105)
3P2−1D2 0.63003 6.3 × 10−3 – 1.8 × 106

O ii 4S3/2−2D5/2 0.37288 3.6 × 10−5 0.88 1160
4S3/2−2D3/2 0.37260 1.8 × 10−4 0.59 3890

O iii 3P0−3P1 88.356 2.62 × 10−5 0.39 461
3P1−3P2 51.815 9.76 × 10−5 0.95 3250
3P2−1D2 0.50069 1.81 × 10−2 2.50 6.4 × 105

3P1−1D2 0.49589 6.21 × 10−3 2.50 6.4 × 105

1D2−1S0 0.43632 1.70 0.40 2.4 × 107

Ne ii 2P1/2−2P3/2 12.8136 8.6 × 10−3 0.37 5.9 × 105

Ne iii 3P2−3P1 15.5551 3.1 × 10−2 0.60 1.27 × 105

3P1−3P0 36.0135 5.2 × 10−3 0.21 1.82 × 104

Si ii 2P1/2−2P3/2 34.8152 2.17 × 10−4 7.7 (3.4 × 105)
S ii 4S3/2−2D5/2 0.67164 2.60 × 10−4 4.7 1240

4S3/2−2D3/2 0.67308 8.82 × 10−4 3.1 3270
S iii 3P0−3P1 33.4810 4.72 × 10−4 4.0 1780

3P1−3P2 18.7130 2.07 × 10−3 7.9 1.4 × 104

S iv 2P1/2−2P3/2 10.5105 7.1 × 10−3 8.5 5.0 × 104

Ar ii 2P1/2−2P3/2 6.9853 5.3 × 10−2 2.9 1.72 × 106

Ar iii 3P2−3P1 8.9914 3.08 × 10−2 3.1 2.75 × 105

3P1−3P0 21.8293 5.17 × 10−3 1.3 3.0 × 104

Fe ii 6D7/2−6D5/2 35.3491 1.57 × 10−3 – (3.3 × 106)
6D9/2−6D7/2 25.9882 2.13 × 10−3 – (2.2 × 106)

ncrit ⇠ 10�3 (T/100K)�1/2 [cm�3]

<latexit sha1_base64="7/geIv7eNhVSB6FyQS74ac8zhyQ="></latexit>

The collisional strengths and other atomic data are available in the 
CHIANTI atomic database (https://www.chiantidatabase.org/).

https://www.chiantidatabase.org/


Energy Loss by Collisionally Excited Line Radiation of H
• H+ has no bound levels and thus no lines. 
• H0 may affect the radiative cooling in a nebula. 

- The most important excitation processes from the ground  term  are 

(1) , followed by emission of a Ly  photon with  

(2) ,   followed by two photon emission with  and transition 
probability . 

- Cross sections for excitation of neutral atoms by electrons do not vary as , but rise from 
zero at the threshold, peak at energies several times the threshold, and then decline at high 
energies, often with superimposed resonances. 

- The mean collision strengths, integrated over the Maxwellian velocity distribution of the 
electrons vary fairly slows, as Table 3.16 shows.

1 2S
1 2S → 2 2Po α hν = 10.2 eV
1 2S → 2 2S hν′ + hν′ ′ = 10.2 eV

A(2 2S → 1 2S) = 8.23 s−1

u−2
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Table 3.16 
Effective collision strengths for H I 

T(K) 12s,2 2s 12s,22po 12s,3 2s 12s, 32po 12 S,3 2 D 

10,000 0.29 0.51 0.066 0.12 0.063 
15,000 0.32 0.60 0.071 0.13 0.068 
20,000 0.35 0.69 0.077 0.14 0.073 

Anderson, H., Balance, C. P., Badnell, N. R., & Summers, H.P. 2000, J.Phys.B, 33, 1255. 

The collisionally excited radiative cooling rate Le is a sum (over all transitions of 
all ions) of individual terms like (3.22), (3.25), or (3.29). In the low-density limit, 
since all the terms in G, LR• L FF• and Le are proportional tone and to the density of 
some ion, Equation (3 .31) and therefore the resulting temperatures are independent of 
the total density, but do depend on the relative abundances of the various ions. When 
collisional deexcitation begins to be important, the cooling rate at a given temperature 
is decreased, and the equilibrium temperature for a given radiation field is therefore 
somewhat increased. 

To understand better the concepts here, let us consider an example, namely, an 
H II region with "typical" abundances of the elements. We will adopt n(O)/n(H) = 
7 x 10-4, n(Ne)/n(H) = 9 x 10- 5, and n(N)/n(H) = 9 x 10- 5, and neglect other 
elements for simplicity. Let us suppose that 0, Ne, and N are each 80 percent singly 
ionized and 20 percent doubly ionized, and n(H 0)/n(H 0) = 1 x 10- 3. Some of the 
individual contributions to the radiative cooling (in the low-density limit) and the total 
radiative cooling Le + L FF are shown in Figure 3.2. For each level the contribution 
is small if kT « x, then increases rapidly and peaks at kT x, and then decreases 
slowly for kT > x. The total radiative cooling, composed of the sum of the individual 
contributions, continues to rise with increasing T as long as there are levels with 
excitation energy x > kT. It can be seen that, for the assumed composition and 
ionization, o++ dominates the radiative cooling contribution at low temperatures, and 
o+ at somewhat higher temperatures. At all temperatures shown, the contribution of 
collisional excitation of H0 is small. 

It is convenient to rewrite Equation (3.31) in the form 

where G - LR is then the "effective heating rate", representing the net energy gained 
in photoionization processes, with the recombination losses already subtracted. This 
effective heating rate is also shown in Figure 3.2, for model stellar atmospheres with 
various temperatures. Notice in the figure that the calculated nebular temperature at 
which the curves cross and at which Equation (3.31) is satisfied is rather insensitive 
to the input stellar radiation field. Typical nebular temperatures are T 7,000 K, 
according to Figure 3.2, with somewhat higher temperatures for hotter stars or larger 
optical depths. 



Resulting Thermal Equilibrium
• The temperature at each point in a static nebula is determined by the equilibrium between 

heating and cooling rates: 

- In the low-density limit, all the terms in , , , and  are proportional to  and to the 
density of some ion. Therefore, the resulting temperature is independent of the total density, 
but do depend on the relative abundances of the various ions. 

- When collisional deexcitation begins to be important, the cooling rate at a given temperature 
is decreased, and the equilibrium temperature for a given stellar radiation field is therefore 
somewhat increased. 

• It is convenient to rewrite the above balance equation in the form 

-  is the “effective heating rate”, representing the net energy gained in photoionization 
processes.

G LR LFF LC ne

G − LR
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• Dashed lines - net effective heating rates 
( ) for various stellar spectra. 

• Top solid black curve - total radiative cooling 
rate ( ). 

• Other solid curves - individual contributions 
to radiative cooling. 

• For each level, the cooling rate is small if 
, then increases rapidly and peaks at 

, and then decreases slowly for 
. 

• The equilibrium temperature is given by the 
intersection of a dashed curve and the total 
radiative cooling rate curve. 

• The increased optical depth  (or increased 
stellar temperature ) increases  by 
increasing . 

• Typical nebular temperatures are 
.

G − LR

LFF + LC

kT ≪ χ
kT ≈ χ
kT > χ

τ0
T* T

G

T ≈ 7000 − 8000 K
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Temperature T 

Figure 3.2 
Net effective heating rates ( G - LR) for various stellar input spectra, shown as dashed 
curves. Total radiative cooling rate (L FF + Le) for the simple approximation to the H II 
region described in the text is shown as highest solid black curve, and the most important 
individual contributions to radiative cooling are shown by labeled solid curves. The equilibrium 
temperature is given by the intersection of a dashed curve and the highest solid curve. Note 
how the increased optical depth, r0 , or increased stellar temperature, T., increases T by 
increasing G. 

G − LR

LFF + LC

[O III]

[N III]

low density



• At high electron densities, collisional 
deexcitation can modify the radiative cooling 
rate and thus the nebular temperature. 

• Higher temperatures occur at high densities. 

• Similarly, lower abundances of the heavy 
elements tend to decrease the cooling rate and 
thus to increase the equilibrium temperature 

• Under conditions of very high ionization, as 
in the central part of a planetary nebula, 

- the ionization is high enough that there 
is very little H0, O+, or O++, and the 
main coolants are Ne+4 and C+3. 

- The nebular temperature can be 
.T ≲ 2 × 104 K
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Temperature T 

Figure 3.3 
Same as Figure 3.2, except that collisional deexcitation at ne = 104 cm- 3 has been approxi-
mately taken into account in the radiative cooling rates. 

high density ( )ne ≈ 104 cm−3


