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Selection Rules
• Selection Rules 

- Allowed = Electric Dipole : Transitions which satisfy all the above selection rules are referred to as allowed 
transitions. These transitions are strong and have a typical lifetime of  s. Allowed transitions are 
denoted without square brackets. 

- Photons do not change spin, so transitions usually occur between terms with the same spin state ( ). 
However, relativistic effects mix spin states, particularly for high Z atoms and ions. As a result, one can get 
(weak) spin changing transitions. These are called intercombination (semi-forbidden or intersystem) 
transitions or lines. They have a typical lifetime of  s. An intercombination transition is denoted with 
a single right bracket. 

- If any one of the rules 1-4, 6-8 are violated, they are called forbidden transitions or lines. They have a typical 
lifetime of  s. A forbidden transition is denoted with two square brackets. 

- Resonance line denotes the longest wavelength, dipole-allowed transition arising from the ground state of a 
particular atom or ion.

∼ 10−8

ΔS = 0

∼ 10−3

∼ 1 − 103

2

e.g., C IV 1548, 1550 Å

(1) one electron jumps
(2) Δn any
(3) Δl = ± 1
(4) parity change
(5) ΔS = 0
(6) ΔL = 0, ± 1 (except L = 0 − 0)
(7) ΔJ = 0, ± 1 (except J = 0 − 0)
(8) ΔF = 0, ± 1 (except F = 0 − 0)

selection rules for configuration

intercombination line if 
only this rule is violated.

This is not commonly considered.
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Table 5.1. Selection rules for atomic spectra. Rules 1, 2 and 3 must always 
be obeyed. For electric dipole transitions, intercombination lines violate 
rule 4 and forbidden lines violate rule 5 and/or 6. Electric quadrupole and 
magnetic dipole transitions are also described as forbidden. 

Electric dipole Electric quadrupole Magnetic dipole 

1. ilJ = 0, ± 1 ilJ = 0, ± 1, ±2 ilJ = 0, ± 1 
Not J = 0- 0 Not J = 0 - 0, ½ - ½, 0 - 1 Not J = 0- 0 

2. ilMJ = 0, ± l ilMJ = 0, ± l, ± 2 ilMJ = 0, ± l 
3. Parity changes Parity unchanged Parity unchanged 
4. ilS = 0 ilS = 0 ilS = 0 
5. One electron jumps One or no electron jumps No electron jumps 

iln any iln any iln = 0 
ill= ±1 ill= 0, ± 2 ill= 0 

6. ilL = 0, ± 1 ilL = 0, ± 1, ± 2 ilL = 0 
Not L = 0- 0 Not L = 0- 0, 0 - l 

Photons do not change spin, so transitions usually occur between terms 
with the same spin state, as expressed by the rule ll.S = 0. However, rela-
tivistic effects mix spin states, particularly for high Z atoms or ions. As a 
result of relativistic effects, one can get (weak) spin changing transitions; 
these are called intercombination lines. Intercombination lines are denoted 
by one square bracket, for example: 

cm] 2s2 1s - 2s2p 3 P 0 at 1908. 7 A. 

This transition is important because the c2+ 2s2p 3P 0 state is metastable, 
i.e. it has no allowed radiative decay so that this transition determines the 
lifetime of this state. Actually, the situation is more subtle than this. The 
3 P 0 term splits into three levels: 3 P0, 3 P1 and 3 P:2- The electric dipole 
intercombination line at 1908.7 A is actually 1S0 - 3P'j'. It has an A value 
of 114 s- 1 . 

The transition 1S0 - 3P~, which occurs at 1906. 7 A, is completely for-
bidden by dipole selection rules as ll.J = 2. It only occurs via a very weak 
magnetic quadrupole transition. The 1906.7 A line is 105 times weaker than 
the already-weak line at 1908. 7 A; it has an A value of 0.0052 s- 1 . These two 
lines can be used to give information on the electron density, as discussed 
in Sec. 7.1. Finally, the transition 1S0 - 3P0 is a J = 0-0 transition, which 
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is completely forbidden by both dipole and quadrupole selection rules. This 
transition is not observed. 

Electric dipole transitions which violate the propensity rules 5 and/ or 6 
are called forbidden transitions. These are labelled by square brackets. For 
example, 

1906.7 A [Cm] 2s2 1S0 -2s2p 3P~, 

322.57 A [Cm] 2s2 1So-2p3s 1Pr 
are both forbidden lines of c2+. The former is a magnetic transition while 
the latter is an electric dipole transition involving the movement of two 
electrons. Forbidden transitions are generally weaker than intercombination 
lines. 

It is also possible to get transitions driven by higher electric multi-
poles or magnetic moments. The only important ones of these are electric 
quadrupole and magnetic dipole transitions. The selection rules for these 
transitions are also given in Table 5.1. Even when all the rules are satisfied, 
electric quadrupole and magnetic dipole transitions are both much weaker 
than the allowed electric dipole transitions. They are thus also referred to 
as forbidden transitions. 

Typical lifetimes, that is inverse Einstein A coefficients, for allowed 
decays via each mechanism are 

Tdipole ~ 10- 8s, Tmagnetic ~ 10- 3s, Tquadrupole ~ ls. 
These timescales mean that states only decay by forbidden transitions when 
there are no decay routes via allowed transitions. 

Finally, it should be noted that even the rigorous selection rules given 
above can be modified when nuclear spin effects are taken into considera-
tion. These result in rigorous selection rules for electric dipole transitions 
based on the final angular momentum. In particular: 

l:l.F must be O or ± 1 with F = 0 +-+ 0 forbidden. 

It is only very rarely necessary to consider this. 

5.3. Observing Forbidden Lines 

States decaying only via forbidden lines live for a long time on an atomic, 
if not an astronomical, timescale. Such states are called metastable states. 

( )ΔS = 1

( , )ΔS = 1 ΔJ = 2



4.1 Introduction
• Collisionally excited lines: Chief emission lines of gaseous nebulae 

- The bulk of the lines are collisionally excited lines, which arise from levels within a few eV of 
the gound level., and which can be excited by collisions with thermal electrons. 

- In the optical region, all these lines are forbidden lines, because in these ions the excited levels 
within a few eV of the ground level arise from the same electron configuration as the ground 
level itself. The radiative transitions are forbidden by the parity selection rule. 

- However, in the UV, collisioinally excited lines begin to appear as being permitted.  

• Recombination lines of H I, He I, and He II 
- The are emitted by atoms undergoing radiative transitions in cascading down to the ground 

level following recombinations to excited levels. 
- These lines are characteristic features of the spectra of gaseouns nebulae. 

• Continuum emission processes 
- bound-free emission (free-bound would be the better word.) 
- free-free emission

3



4.2 Optical Recombination Lines
• Populations of levels in LTE 

- In thermodynamics equilibrium (TE), the Saha equation gives the degree of ionization: 

 

and the Boltzmann equation gives the relative populations between levels: 

, 

where the ratio of statistical weights is  . 

- Combining these equation, 

,  where  . 

• Statistical equilibrium for the population of any level  
- Case A: In the limit of very low density, the only processes that need be considered are captures and 

downward-radiative transitions. 

- The equation of statistical equilibrium for an level  is 

 

In general,  only if .

npne

n1S
= ( 2πmkT

h2 )
3/2

exp (−hν0/kT)

nnL

n1S
= (2L + 1)exp (−χn /kT)

gnL /g1S = (2L + 1)

nnL = (2L + 1)( h2

2πmkT )
3/2

exp (−Xn /kT) npne Xn = hν0 − χn =
hν0

n2

nL

nL

npneαnL(T ) +
∞

∑
n′ >n

∑
L′ 

nn′ L′ An′ L′ ,nL = nnL

n−1

∑
n′ ′ =1

∑
L′ ′ 

AnL,n′ ′ L′ ′ 

An′ L′ ,n′ ′ L′ ≠ 0 L′ = L′ ′ + 1

4

nL

n′ ′ L′ ′ 

n′ L′ 

the ionization potential of the level nL

https://casper.astro.berkeley.edu/astrobaki/index.php/Milne_Relation 
https://casper.astro.berkeley.edu/astrobaki/index.php/Saha_Equation( )hν0 = 1 Ryd

(χn = En − E1 = energy difference)
nj

n2
=

gj

gi
exp (−Eji /kT)

selection rules:  and ΔL = 0, ± 1 & Δl = ± 1 L = l for H

https://casper.astro.berkeley.edu/astrobaki/index.php/Milne_Relation
https://casper.astro.berkeley.edu/astrobaki/index.php/Saha_Equation


• Method (1): Non-LTE Departure Coefficients  

- Non-LTE departure coefficients  = the dimensional factors that measure the deviation from 
thermodynamic equilibrium. 

- In general, in a non-LTE state, the population may be written 

,      and  in TE. 

- Substituting this equation to the statistical balance equation, we obtain 

 

 

- The  factors are independent of density as long as recombination and downward-radiative 
transitions are the only relevant processes. 

- If  are known for all  and , then above equation can be solved for 
.

bnL

bnL

nnL = bnL(2L + 1)( h2

2πmkT )
3/2

exp (−Xn /kT) npne bnL = 1

αnL
1

(2L + 1) ( 2πmkT
h2 )

3/2

e(−Xn/kT) +
∞

∑
n′ >n

∑
L′ ′ 

bn′ L′ An′ L′ ,nL ( 2L′ + 1
2L + 1 ) e(Xn′ −Xn)/kT

= bnL

n−1

∑
n′ ′ =1

∑
L′ ′ 

AnL,n′ ′ L′ ′ 

bnL

bnL n ≥ nK L = 0, 1, ⋯, n − 1
n ≤ nK − 1
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• Method (2): Probability matrix and Cascade matrix 
- Probability matrix,  is the probability that population of  is followed by a direct 

radiative transition to . 

,   which is zero unless . 

- Cascade matrix,  is the probability that population of  is followed by a transition to 
 via all possible cascade routes. 

      if we define     

- The solutions of the equilibrium equations my be written down as follows: 

 

- Once the cascade matrix has been calculated, it can be used to find the  factors or the 
populations  at any temperature. 

- This is true even for cases in which the population occurs by other non-radiative processes (i.e., 
collisional excitation)

P(nL, n′ L′ ) nL
n′ L′ 

PnL,n′ L′ =
AnL,n′ L′ 

∑n−1
n′ ′ =1 ∑L′ ′ AnL,n′ ′ L′ ′ 

L′ = L ± 1

C(nL, n′ L′ ) nL
n′ L′ 

CnL,n′ L′ =
n

∑
n′ ′ >n′ 

∑
L′ ′ =L′ ±1

CnL,n′ ′ L′ ′ Pn′ ′ L′ ′ ,n′ L′ CnL,nL′ ′ = δLL′ ′ 

npne

∞

∑
n′ =n

n′ −1

∑
L′ =0

αn′ L′ (T )Cn′ L′ ,nL = nnL

n−1

∑
n′ ′ =1

∑
L′ ′ =L±1

AnL,n′ ′ L′ ′ 

bnL
nnL
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• Emission coefficient (emissivity) 

 

- The above situation is called Case A, which assumes that all line photons emitted in the nebula escape 
without absorption and therefore without causing further upward transitions. 

- Such nebulae can contain only a relatively small amount of gas and are mostly too faint to be easily 
observed. 

• Central line-absorption cross section of Lyman resonance lines 
- Nebulae that contain observable amounts of gas generally have quite large optical depths in the Lyman 

resonance lines of H I. 

- The central line-absorption cross section for a Lyman resonance line (between  and 1) is 

 

Here,  is the thermal velocity and  is the wavelength of the line. 

Relation between the absorption cross section and A-coefficient for a transition between 1 and 2 states:  

 ,     . 

(see Lecture Notes 2 and 14 of Astrophysics)

jnn′ =
hνnn′ 

4π

n−1

∑
L=0

∑
L′ =L±1

nnLAnL,n′ L′ 

n

σ0(Ln) = fnP,1S
πe2

mec
1

νn1(υth /c)
1

π
=

3λ3
n1

8π ( mH

2πkT )
1/2

AnP,1S [cm2]

υth = ( 2kT
mH )

1/2

λn1

f12
πe2

mec
=

hν21

4π
B12 =

hν21

4π
g2

g1

c2

2hν3
21

A21 gnP : g1S = 3 : 1
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• Case B: conversion of the Lyman series photons. 
- An ionization-bounded nebula with  (at , Lyc) has , , , 

and . 

- In each resonance scattering, therefore, there is a finite probability that the Lyman-line photon will be 
converted to a lower-series photon plus a lower member of the Lyman series. 

- For instance, when an Ly  photon is absorbed by an H atom, it is scattered with a probability of 
 or converted into H  + two photons with . 

- An Ly  photon is transformed either into (1) a Pa  photon + an H  photon + an Ly  photon, or (2) into an H
 photon + two photons ( ). 

- Case B: For large optical depths, every Lyman-line photon (if ) is scattered many times and is 
converted into lower-series photons plus either Ly  or two-continuum photons. Case B is more accurate than 
Case A for most nebulae. 

- However, real situation is intermediate, and is similar to Case B for the lower Lyman lines, but  approaches 
to Case A as  and . 

- In Case B, the downward radiative transitions from  ( ) to  are simply omitted from the 
consideration.

τ0 = 1 ν = ν0 τ(Lyα) ≈ 104 τ(Lyβ) ≈ 103 τ(Ly8) ≈ 102

τ(Ly18) ≈ 10

β
P31,10 = 0.882 α P31,20 = 0.118

γ α α α
β 2 2S − 1 2S

n ≥ 3
α

n → ∞ τ(Lyn) → 1

n 2Po n ≥ 3 1 2S

8

3 2P

1 2S

2 2SLyβ
Hα

Lyβ2γ
After ~9 scatterings, an Ly  photon is converted to H  + 
two photons, and cannot escape from the nebula.

β α

(Here,  = probability of the transition from  to .)PnL,n′ L′ n, L n′ , L′ 



• It is convenient to define the effective recombination coefficient: 

-  

• For H-like ions of nuclear charge Z, 

- . Therefore,  and  matrices are independent of Z. 

- ,  

-  

- Therefore, the emission coefficient is   

- Thus, the calculations for H I at a temperature  can be applied to He II at :

npneαeff
nn′ ≡

n−1

∑
L=0

∑
L′ =L±1

nnLAnL,n′ L′ =
4πjnn′ 

hνnn′ 

AnL,n′ L′ ∝ Z4 PnL,n′ L′ CnL,n′ L′ 

αnL(Z, T ) = ZαnL(1,T/Z2) αeff
nn′ (Z, T ) = Zαnn′ (1,T/Z2)

νnn′ (Z ) = Z2νnn′ (1)

jnn′ (Z, T ) = Z3jnn′ (1,T/Z2)

T T′ = 4T
jnn′ (2,T′ ) = 8jnn′ (1,T = T′ /4)

9

(En = −
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n2
Ryd)



4.2 Optical Recombination Lines - Collision Effects 
• Collision of H with protons 

- Collisions with both electrons and protons can cause the angular-momentum-changing 
transitions, , which have small energy difference. Protons are more effective 
than electrons because of the slow velocity of protons. 

- These collisional transitions must be included in the equilibrium equations. 

 

 

where  or 2 for Case A and B, respectively. [Note a typo in Eq. (4.16)] 
The collisional transition probability per proton per unit volume is given by 

.

nL → nL ± 1

npneαnL(T ) +
∞

∑
n′ >n

∑
L′ =L±1

nn′ L′ An′ L′ ,nL + ∑
L′ =L±1

nnL′ npqnL′ ,nL

= nnL

n−1

∑
n′ ′ =n0

∑
L′ ′ =L±1

AnL,n′ ′ L′ ′ + ∑
L′ ′ =L±1

npqnL,nL′ ′ 

n0 = 1

qnL,n′ L′ (T ) = ∫
∞

0
uσ(nL → n′ L′ )f(u)du [cm3 s−1]
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• Thermodynamic Equilibrium between different  states within the same : 
- For sufficiently large proton densities, the collisional terms dominate, and they tend to set up a TE 

distribution of the various L levels within each n. 

- Then, the populations are proportional to the statistical weights (because of very tiny energy differences 
between them): 

     or    , where   is the 

total population in the levels with the same principal quantum number . 

- As  increases, the collisional cross section  increases, but the transition probabilities  
decreases. Therefore, the TE condition become increasingly good approximations with increasing . 

- The typical cross sections for protons at  K are 

 

 

  

- There is a level  above which the TE applies. At  K, they are 

 

 

L n

nnL

nnL′ 
=

gnL

gnL′ 
=

2L + 1
2L′ + 1

nnL =
2L + 1

n2
nn ←

n−1

∑
L=0

(2L + 1) = n2 nn =
n−1

∑
L=0

nnL

n
n σnL→nL±1 AnL,n′ L±1

n
T ≈ 104

σ(2 2S → 2 2Po) ≈ 3 × 10−10cm2

σ(10 2L → 10 2L ± 1) ≈ 4 × 10−7cm2

σ(20 2L → 20 2L ± 1) ≈ 6 × 10−6cm2

ncL T ≈ 10,000

ncL ≈ 15 at np ≈ 104 cm−3

ncL ≈ 30 at np ≈ 102 cm−3

ncL ≈ 45 at np ≈ 1 cm−3
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• The same type of effect occurs in the He II spectrum. 
- The He II lines are emitted in the H+ and He++ zone, so both H+ ions (protons) and He++ ions (  particles) can 

cause collisional, angular momentum-changing in the excited levels of He+. The cross sections  are 
larger for the He++ ions than for the H+ ions. Both of them must be taken into account in the He++ region. 

- The level  above which the TE condition can apply for He II is 

,   when  K. 

• . 
- For the transitions , collisions with electrons are more effective than collisions with 

protons. 

- At  K, the representative cross sections for electrons are of order 
 

- The effects of these collisions can be incorporated into the equilibrium equations. 

- The cross sections decreases with increasing  (but not too rapidly). Collisions with  must 
all be included in the equilibrium equations. 

• The computational work required to set up and solve the equations becomes increasingly complicated 
and lengthy, but is straightforward in principle. 

• Collisions tend to couple levels with  and small . This coupling increases with increasing  
(and ) and with increasing . 

- With collisions taken into account, the  factors and resulting emission coefficients are no longer 
independent of density. 

- Table 4.4 (for H I) and Table 4.5 (for He II) shows that the density dependence is rather small.

α
σnL→nL±1

ncL

ncL ≈ 22 at np ≈ 104 cm−3 ncL ≈ 32 at np ≈ 102 cm−3 T ≈ 10,000

σ(n, L → n, L ± 1) ≫ σ(n, L → n ± 1,L ± 1)
(n, L → n ± 1,L ± 1)

T ≈ 104

σ(nL → n ± Δn, L ± 1) ≈ 10−16 cm2

Δn Δn = 1, 2, 3, ⋯

ΔL = ± 1 Δn ne
np n

bnL
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• Exactly the same formalism can be applied to He I recombination lines. 
- The singlet and triplets can be treated as approximately separate systems. 

- The He I triplets always follow Case B, because downward radiative transitions to  
(singlet) essentially do not occur. 

- For the singles, Case B is usually a better approximation than Case A. 

- He I  line photons can photoionize , and thus may be destroyed before they are 
converted into lower-energy photons.

1 1S

1 1S − n 1Po H0

13

selection rule: ΔS = 0

1 1S

2 1Po

2 3S
permitted

forbidden

singlets triplets

2 3Po



4.3 Optical Continuum Radiation
• Continuum 

- In addition to the recombination lines in the bound-bound transitions, recombination processes 
also lead to the relatively weak emission in free-bound and free-free transition. 

- The H I continuum is the strongest. The He II continuum may also be significant if He is 
mostly doubly ionized, but the He I continuum is always weaker. 

- In the optical region, the free-bound continua are stronger. But, in the IR and radio regions the 
free-free continuum dominates. 

- There is also the two-photon decay of the  level of H. 

• Free-bound continuum 
- Suppose the H I free-bound continuum radiation at frequency , resulting from recombination 

of free electrons with velocity  to levels with quantum number  and ionization 
potential , where 

 and  

- Its emission coefficient is  . 

- The recombination cross sections can be calculated from the photoionization cross sections 
using the Milne relation.

2 2S

ν
u n ≥ n1

Xn

hν =
1
2

u2 + Xn hν ≥ Xn1
=

hν0

n2
1

jν =
1

4π
npne

∞

∑
n=n1

n−1

∑
L=0

uσnL(H0, u)f(u)hν
du
dν
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n

∞

En < 0

E∞ = 0

1
2

meυ2

Xnhν



• Free-free (or bremsstrahlung) continuum 
- The emission coefficient emitted by positive ions of charge Z is 

,    

where  is a Gaunt factor. 

• Free-bound + free-free 
- The emission coefficient for the H I recombination continuum, including both free-bound and 

free-free contributions, may be written 

 

- The contributions to the continuum-emission coefficient from He I and He II may be written 

,   and    

- The numerical values of  are shown in Table 4.7, 4.8 and 4.9, and Figure 4.1. 

- The calculation for He II is exactly analogous to that for H I. 
- But, for He I, there is no L degeneracy.

jν =
1

4π
n+ne

32Z2e4h
3m2

e c3 ( πhν0

3kT )
1/2

exp (−hν/kT) gff(T, Z, ν) hν0 = R∞ =
2π2mee4

ch3

gff(T, Z, ν) ≈ 1 − 5

jν(H I) =
1

4π
npneγν(H0, T )

jν(He I) =
1

4π
n(He+)neγν(He+, T ) jν(He II) =

1
4π

n(He++)neγν(He++, T )

νγν
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• Two-photon continuum-emission 
- The transition probability for the two-photon decay is . 

- The sum of the energies of two photons is . 

- The probability distribution of the emitted photons is therefore symmetric around the 
frequency , corresponding to . The emission coefficient 
in this two photon continuum may be written 

         

 and   [Note a typo in Eq. (4.25)] 

Here,  is the normalized probability per decay that one photon is emitted in the range of 
frequencies  to .

A2 2S→1 2S = 8.23 s−1

hν′ + hν′ ′ = hν12 = hνLyα = (3/4)hν0

(1/2)ν12 = 1.23 × 1015 s−1 λ = 2431 Å

jν(2q) =
1

4π
n2 2SA2 2S,1 2S

hν
ν12

P(y) ⇒ ∫ jνdν =
1

4π
n2 2SA2 2S,1 2S ∫

1

0
hνP(y)dy

y =
ν

ν12
P(ν) =

1
ν12

P(y)

P(y)dy
yν12 (y + dy)ν12
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- To express the two-photon continuum-emission coefficient, we need to calculate the 
equilibrium population of . 

- In low-density nebulae, the equilibrium is given by   , 

where  is the effective recombination rate coefficient for populating  by direct 
recombinations and by recombinations to higher levels followed by cascade to . 

- At finite densities, angular-momentum-changing transition from  to  by collisions 
with protons and electrons reduce the population of . The protons are more effective than 
electrons (but electrons are not completely negligible). With these collisional processes taken 
into account, the population in  is given by 

 

,  where   

 is the frequency dependence of  two-photon emission coefficient. 

Note that the symmetry  and thus  

- Collisional deexcitation of  via  is more important than two-photon decay for 
.

n(2 2S)
npneαeff

2 2S(H
0, T ) = n2 2SA2 2S→1 2S

αeff
2 2S 2 2S

2 2S
2 2S 2 2Po

2 2S

2 2S

npneαeff
2 2S(H

0, T ) = n2 2S (A2 2S,1 2S + npq2 2S,2 2Po + neq2 2S,2 2Po)
jν(2q) =

1
4π

n2SA2S,1S hνP(ν) =
1

4π
npneγν(2q) γν(2q) =

αeff
2 2S hνP(ν)

1 + [
npqp

2S,2P + neqe
2S,2P

A2S,1S ]
gν = hνP(ν) H0

P(ν) = P(ν′ = ν12 − ν) gν = (ν/ν′ ) gν′ 

2 2S 2 2Po

np ≥ 104 cm−3
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Frequency variation of continuous-emission coefficient Yv(H0, solid line), Yv (He0 , thin solid 
line), Yv (He+, dashed line), and Yv (2hv, smooth solid line) in the low-density limit ne 0, 
all at T = 10,000 K. 

from 2 2 S. The protons are more effective than electrons, whose effects, however, are 
not completely negligible, as can be seen from the values of the collisional transition 
rates per 2 2 S atom, in Table 4.10. With these collisional processes taken into account, 
the equilibrium population in 2 2S is given by 

(4.27) 

From Table 4.10, it can be seen that collisional deexcitation of 2 2 S via 2 2 P 0 is more 
important than two-photon decay for n P 2:: 104 cm- 3; so at densities approaching 
this value, Equation (4.27) must be used instead of Equation (4.26). Thus combining 
Equations (4.25) and (4.27), we can write the emission coefficient as 

(4.28) 

The figure shows the large 
discontinuities at the ionization 
potentials of the various excited level. 

For a He abundance of 10%, if the He 
is mostly doubly ionized, then the He 
II contribution is roughly comparable 
to that of H I. 

But, if the He is mostly singly ionized, 
the He I contribution is only about 
10% of the H I contribution.

H0

He0

He+

2γ 6.2 Two-Photon Radiation 173 

10,000 7500 7500 5000 4275 3750 3300 3000 

T= 10,000K 

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 
Frequency (1014 Hz) 

Figure 6.1 
Free-bound continuum emission coefficient (4:n:nenpiv) for H 1 (dashed line), He I, and He II 
at 10,000 K. The curve labelled y (2q) is the two-photon continuum from H (from Brown and 
Mathews 1970, ApJ, 160,939). 

In low-density environments such as those found in planetary nebulae, an electron 
in the 22S112 level can jump to a virtual p state, which lies between n = 1 and n = 2 
levels. The electron then jumps from this virtual state to the ground state, in the process 
emitting two photons with total frequency v1 + v2 = Vi,ya. Such virtual states are 
possible as long as its lifetime (time between having come from 2s and taking off 
to ls) is small enough to be allowed by the uncertainty principle. Since this virtual p 
state can occur anywhere between n = 1 and n = 2, continuum emission longward of 
Lya will result. The emission coefficient of the two-photon (2-y) process is given by 

(6.6) 

Figure 6.1 in Physics and Chemistry of 
the Interstellar Medium (Sun Kwok)

Two photon emission is significant in 
comparison with the H I continua, just 
above the Balmer limit at .λ3646Å



4.4 Radio-Frequency Continuum and Line Radiation (1) Continuum
• In the radio-frequency region  and thus stimulated emission is much more 

important than in the optical region. 
• Free-free emission: The radio-frequency continuum is due to free-free emission. The 

emission coefficient is the same as that applies in the optical region. 

, 

where ,  is Euler’s constant.  

Numerically, this is approximately 

 with  in K and  in Hz. 

At  K,  MHz, .

hν ≪ kT

jν =
1

4π
n+ne

25πe6Z2

3mec3 ( 2π
3mekT )

1/2

exp (−hν/kT) gff(T, Z, ν)

gff(T, Z, ν) =
3

π [ln ( 8k3T3

π2Z2e4mν ) −
5γ
2 ] γ = 0.577

gff(T, Z, ν) =
3

π (ln
T3/2

Z ν
+ 17.7) T ν

T ≈ 104 ν ≈ 103 gff ≈ 10
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• Free-free absorption: The free-free “effective” absorption coefficient is found from Kirchhoff’s 
law. 

-   where    

     per unit length. 

This effective absorption coefficient is the difference between the true absorption and the stimulated 
emission.  . 

- The optical depth is obtained as follows, after substituting numerical values and fitting powers to the 
weak temperature and frequency dependence of : 

 

where  is measured in K, , and  is the continuum emission measure in units 
of . 

- From the optical depth, all nebulae become optically thick at low frequencies, optically thin at high 
frequencies. 

‣  at 200 MHz for an H II region with  and a diameter 10 pc. 

‣  at 600 MHz for a planetary nebula with  and a diameter 0.1 pc.

κν = jν /Bν Bν = (2hν3/c2)[exp (hν/kT) − 1]
−1

≈ 2ν2kT/c2 if hν/kT ≪ 1

∴ κν = n+ne
16π2Z2e6

(6πmekT )3/2ν2c
gff

1 − exp(−hν/kT ) ≈ hν/kT ≪ 1

gff

τν = ∫ κνds

= 8.24 × 10−2T−1.35ν−2.1
9 ∫ n+neds

= 8.24 × 10−2T−1.35ν−2.1
9 EMc/cm−6pc

T ν9 = ν/109 Hz EMc
cm−6pc

τν ≈ 1 ν ≈ ne ≈ np ≈ 102 cm−3

τν ≈ 1 ν ≈ ne ≈ 3 × 103 cm−3
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• The equation of RT 

 in LTE. 

• It there is no incident radiation, the solution is given by . 

• In the radio-frequency region, . 

• It is conventional in radio astronomy to measure intensity in terms of brightness 
temperature, defined by . Then, the RT equation becomes 

 

• For an isothermal nebula, the solution becomes 

  

Therefore,  at high frequency and  at low frequency. 

dI
ds

= − κνIν + jν ⇒
dI
dτν

= − Iν +
jν
κν

= − Iν + Bν(T )

Iν = ∫
τν

0
Bν(T )exp(−τν)dτν

Bν(T ) =
2hν3

c2

1
exp(hν/kT ) − 1

≈
2ν2kT

c2

Tbν = c2Iν /2ν2k

Tbν = ∫
τ

0
T exp(−τν)dτν

Tbν = T (1 − e−τν) {Tτν as τν → 0
T as τν → ∞

Tbν ∝ ν−2 Tbν = constant

21



4.4 Radio-Frequency Continuum and Line Radiation (2) Line
• The H I recombination lines of very high  belong to the radio-frequency spectral region. 

- Observed examples: 

‣ H 109  (from  to ) at 5008.89 MHz, 5.99 cm 

‣ H 137  (from 139 to ) at 5005.0 MHz, 6.00 cm 

• For all line observed in the radio-frequency region,  (a level above which the TE 
can be applied), so that  at a fixed , and only the populations  need be 
considered. 

• Collisional ionization of levels with large  and its inverse process (three-body 
recombination) must also be taken into account in the equations of statistical equilibrium 
of level populations. 

 

- The rate of collisional ionization per unit volume per unit time from level  is 

, where  is the collisional ionization rate coefficient. 

- The rate of three-body recombination per unit volume per unit time may be written 
. From the principle of detailed balancing, the three-body recombination rate 

coefficient is obtained: 

n

α n = 110 n = 109 ν = λ =

β n = n = 137 ν = λ =

n > ncL
nnL ∝ (2L + 1) n nn

n

H0(n) + e ⟺ H+ + e + e
n

nnne ⟨uσc.i.(n)⟩ = nnneqn,i(T ) qn,i = ⟨uσc.i.⟩

npn2
e ϕn(T )

ϕn(T ) = n2 ( h2

2πmekT )
3/2

exp (Xn /kT) qn,i(T )
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• Then, the equilibrium equation at high  becomes 

 

where  is the mean transition probability averaged over all the  

levels of the upper principal quantum number.

n

npne [αn(T ) + neϕn(T )] +
∞

∑
n′ >n

nn′ An′ ,n +
∞

∑
n′ =n0

nn′ neqn′ ,n = nn

n−1

∑
n′ =n0

An,n′ +
∞

∑
n′ =n0

neqn,n′ (T ) + neqn,i(T )

An,n′ =
1
n2 ∑

L,L′ 

(2L + 1)AnL,n′ L′ L

23

radiative rec. + 3-body rec. + radiative decay + collisional deexcitation =  radiative decay + collsional deexcitation + collisional ionization

• These equations can be expressed in terms of 
 instead of , and the solutions can be 

found numerically by matrix-inversion 
techniques. 
- Since the  factors have been defined w.r.t. 

thermodynamic equilibrium at , , and , 
the coefficient  for the free electrons is 
identically unity ( ). 

- Figure 4.2 (upper panel) shows that the 
increasing importance of collisional transitions 
as  increases makes  at lower and 
lower .

bn nn

bn
T ne np

b∞
b∞ = 1

ne bn ≈ 1
n
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Figure 4.2 
Dependence of bn and d In bn/dn on n at various densities, all at T = 10,000 K. 

4.5 Radiative Transfer Effects in H I 

For most of the emission lines observed in nebulae there is no radiative-transfer prob-
lem; in most lines the nebulae are optically thin, and any line photon emitted simply 
escapes. However, in some lines, especially the resonance lines of abundant atoms, 
the optical depths are appreciable, and scattering and absorption must be taken into 
account in calculating the expected line strengths. Two extreme assumptions, Case A, 
a nebula with vanishing optical thickness in all the H I Lyman lines, and Case B, a 
nebula with large optical depths in all the Lyman lines, have already been discussed in 
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4.5 Radiative Transfer Effects in H I 

For most of the emission lines observed in nebulae there is no radiative-transfer prob-
lem; in most lines the nebulae are optically thin, and any line photon emitted simply 
escapes. However, in some lines, especially the resonance lines of abundant atoms, 
the optical depths are appreciable, and scattering and absorption must be taken into 
account in calculating the expected line strengths. Two extreme assumptions, Case A, 
a nebula with vanishing optical thickness in all the H I Lyman lines, and Case B, a 
nebula with large optical depths in all the Lyman lines, have already been discussed in 

 KT = 104



• Radiative Transfer and Stimulated Emission 
- To calculate the emission in a specific recombination line, it is necessary to solve the equation 

of RT, taking account of the effects of stimulated emission. 

- If  is the true line-absorption coefficient, the line-absorption coefficient corrected for 
stimulated emission is 

-    (see Astrophysics Lecture 2) 

- Since  and , we can expand it in a power series and obtain 

-

kνl

kνL = kνl (1 −
nm /gm

nn /gn ) = kνl [1 −
bm

bn
exp (−hνmn /kT)]

bm /bn ≈ 1 hν ≪ kT

kνL = kνl [ bm

bn

hν
kT

−
d ln(bn)

dn
Δn]
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4.5 Radiative Transfer Effects in H I 

For most of the emission lines observed in nebulae there is no radiative-transfer prob-
lem; in most lines the nebulae are optically thin, and any line photon emitted simply 
escapes. However, in some lines, especially the resonance lines of abundant atoms, 
the optical depths are appreciable, and scattering and absorption must be taken into 
account in calculating the expected line strengths. Two extreme assumptions, Case A, 
a nebula with vanishing optical thickness in all the H I Lyman lines, and Case B, a 
nebula with large optical depths in all the Lyman lines, have already been discussed in 

- This coefficient can become negative, 
implying maser action, if  is 
sufficiently large. 

- Since  for typical observed 
lines, Figure 4.2 shows that this is often 
the case and the maser effect is in fact 
often quite important.

(d ln bn)/dn

hν/kT ≈ 10−5

⇐ bm ≈ bn +
dbn

dn
Δn and e−hν/kT ≈ 1 − hν/kT

 KT = 104



4.5 Radiative Transfer Effects in H I
• Optical Thickness and Resonance Lines 

- In most lines, the nebulae are optically thin, and they simply escapes. 
- However, in some lines, especially the resonance lines of abundant atoms, the optical depths 

are appreciable, and scattering and absorption must be taken into account in calculating the 
expected line strengths. 

• Two extreme assumptions 
- Case A: a nebula with vanishing optical thickness in all the H I Lyman lines 
- Case B: a nebula with large optical depths in all the Lyman lines. 
- These two cases do not require a detailed radiative-transfer solution. 
- In the intermediate cases, a more sophisticated treatment is necessary. 

• Other RT problems arise in connection with (1) the He I triplets, (2) the conversion of He 
II Ly  and H I Ly  into observable O III or O I line radiation, respectively, by the Bowen 
resonance-fluorescence precesses, and (3) fluorescence excitation of other lines by stellar 
continuum radiation.

α β
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• In a static nebula, the only line-broadening mechanisms are thermal Doppler broadening 
and radiative damping. In the cores, where radiative damping can be neglected, the line-
absorption coefficient has the Doppler form (Gaussian): 

•  

•  is the line-absorption cross section at the center of the line, 

 is the thermal Doppler width (Hz), , and  

is the absorption oscillator strength between the lower level ( ) and upper level ( ). The 
full-width at half-maximum (FWHM) of the line is . 

• Small-scale micro-turbulence can be taken into account as a further source of broadening 
of the line-absorption coefficient by adding the thermal and turbulent velocity terms in 
quadrature, . 

• Large scale turbulent and expansion of the nebula can be treated by considering the 
frequency shift between the emitting and absorbing volumes (e.g. Sololev approximation 
or large gradient velocity (LGV) method).

kνl = k0l exp [−(Δν/ΔνD)2] = k0l exp (−x2) [cm2]

k0l =
πe2fij

mecΔνD

ΔνD =
2kT

mHc2
ν0 =

υth

c
ν0 [Hz] Δν = ν − ν0 fij

i j
2 ln 2ΔνD

Δν2
D → b2 = Δν2

thermal + Δν2
turbulent
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Here,  indicates that the coefficient 
or optical depth is for line.

l



• Escape probability 
- In a static nebula, a photon emitted at a particular point in a particular direction and with a 

normalized frequency  has a probability  of escaping from the 
nebula without further scattering and absorption. Here,  is the optical depth from the point to 
the edge of the nebula in this direction and at this frequency.  

- Averaging over all directions gives the mean escape probability from this point and at this 
frequency. 

- Further averaging over the frequency profile of the emission coefficient gives the mean escape 
probability from the point. 

- For all the forbidden lines and for most of the other lines, the optical depths are so small in 
every direction, even at the center of the line, that the mean escape probabilities from all 
points are essentially unity. 

- However, for lines of larger optical depth we must examine the probability of escape 
quantitatively.

x = (ν − ν0)/ΔνD exp(−τx)
τx

27

average over all directions ( ), over all points within the medium, and over all frequencies4π

⟨Pesc⟩ = ∫ ∫ ∫ [1 − e−τν(r, Ω)] dΩdVdν

 = optical depth from a point  to 
the boundary measured in a direction .
τν(r, Ω) r

Ω



• Escape probability in a spherical nebula 
- Consider a homogeneous spherical nebula with optical radius  in the line center. 

- If, at a particular normalized frequency , the optical radius of the nebula is , the mean 
escape probability averaged over all directions and volumes is 

 

- If , only the Doppler core of the line absorption cross section need be considered. In 
this case, when we average over the Doppler profile, the mean escape probability for a photon 
emitted in the line is 

 

- This integral must be evaluated numerically, but for , the results can be fitted fairly 
accurately with 

τ0

x τx

p(τx) =
3

4τx
1 −

1
2τ2

x
+ ( 1

τx
+

1
2τ2

x ) exp(−2τx)

τ0 < 104

ε(τ0) =
1

π ∫
∞

−∞
p(τx)exp(−x2)dx

τ0 ≤ 50

ε(τ0) =
1.72

τ0 + 1.72
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Derivation of the escape probability formula

θ
R

s

O
F

I(θ)

[No absorption]

s = R cos θ

I(θ) = ∫
s

−s
jdl = 2js = 2jR cos θ

Intensity along the  direction at the surface (point O)θ

a homogeneous sphere with 
a constant emission coefficient  
a constant absorption coefficient  
no external source

j
κ

τ0 = κR

Flux at the surface

F0 = ∫
2π

0 ∫
π/2

0
I(θ)cos θ sin θdθdϕ = (4πjR)∫

1

0
μ2dμ

=
4π
3

jR

[Absorption]

I(θ) = S [1 − e−τ(θ)]
From the RT equation solution

Here,  is the source function, 
and  is the optical 
depth along the  direction

S = j/κ
τ(θ) = 2R cos θκ

θ

Fesc = 2π∫
1

0
I(θ)μdμ =

2πj
κ ∫

1

0
(1 − e−2τ0μ) μdμ

=
πj
κ

1 + ( 1
τ0

+
1

2τ2
0 ) e−2τ0 −

1
2τ2

0

Escaping flux at the surface

Therefore, the escape probability is

fesc =
Fesc

F0
=

3
4τ0

1 + ( 1
τ0

+
1

2τ2
0 ) e−2τ0 −

1
2τ2

0



• Lyman lines : resonance scattering or resonance florescence 
- A Lyman line Ly  can be absorbed by another hydrogen atom, and each absorption process 

represents an excitation of the  level of H0. 

- This excited level very quickly undergoes a radiative decay. The result is either resonance 
scattering or resonance fluorescence excitation of another H I line. 

- Let’s define  and  as the probability that absorption of an Ly  photon results in 
emission of an Ly  photon and of an H  photon, respectively. Then, they can be calculated 
from the probability and cascade matrices. (see the rightmost panel in the above figure) 

 

n
n 2Po

Pn(Lym) Pn(Hm) n
m m

Pn(Lym) = Cn1,m1Pm1,10

Pn(Hm) = Cn1,m0Pm0,21 + Cn1,m1Pm1,20 + Cn1,m2Pm2,21
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n 2Po

1 2S

2 2S

Lyn

Lyn Hn

2γ

n 2Po

1 2S

2 (2S, 2Po)

Lyn Lym Hm

Lyα2γ

m
S, Po, or D

n 2Po

1 2S

2 2Po

Lyn Lyn

Hα
3 2S

Pan

Lyα

Po

Here,

P ⇒ S → P P ⇒ P → S P ⇒ D → P

0 =  
1 =  
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S
Po
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• Calculation of the emergent Lyman-line spectrum using these probabilities 
-  = total number of Ly  photons generated per unit time by recombination and subsequent cascading 

-  = total number of Ly  photons absorbed per unit time 

-  = total number of Ly  photons emitted per unit time = sum of the contributions from recombination and 
from resonance fluorescence plus scattering: 

                                   Eq(1) 

-  = escape probability of individual Ly  photon. The total number of Ly  photons escaping per unit time is 

              Eq(2) 

- In a steady state, the number of Ly  photons emitted per unit time = the numbers absorbed + the number 
escaping per unit time:  

                                     Eq(3) 

- Eliminating  in equations (1) and (3),          Eq(4) 

-  and  are known from the recombination theory.  are known from the RT theory. We can solve 
the equation for , working downward from the highest  at which  differs appreciably from unity.  
(  and  as , see next page). 

- Then, the  may be calculated from Eq (2), giving the emergent Lyman-line spectrum.

Rn n

An n

Jn n

Jn = Rn +
∞

∑
m=n

AmPm(Lyn)

εn n n

En = εnJn = εn [Rn +
∞

∑
m=n

AmPm(Lyn)]
n

Jn = An + En = An + εnJn

Jn An = (1 − εn)[Rn +
∞

∑
m=n

AmPm(Lyn)]
Rn Pm(Lyn) εn

An n εn
f1n → 0 εn → 1 n → ∞

En
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Eq. (5.101) Sun Kwok
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Table5.8 
Oscillator strengths for some of the lower transitions of H 

n1, l1 n2, l2 f n1, l1 n2,l2 f 

1,0 2,1 (Lya) 0.4162 2,1 3,0 (Ha) 0.01359 

3,1 (Ly{J) 0.07910 3,2 (Ha) 0.6958 

4,1 (Lyy) 0.02899 4,0 (H/J) 0.003045 

5,1 (LyS) 0.01394 4,2 (H{J) 0.1218 

2,0 3,1 (Ha) 0.4349 5,0(Hy) 0.001213 

4,1 (H/J) 0.1028 5,2 (Hy) 0.04437 

The A coefficients of the other members of the Lyman series can be similarly calcu-
lated using the H atom wavefunctions, and the rest of the oscillator strengths can be 
summarized by the following expression: 

( )
2i-4 

( 2s) 1-¾ 
Ju= 3i3 ( 1 + ¾)2H-4. (5.101) 

The values of the spontaneous decay rates ( expressed as oscillator strengths) for 
several lower transitions ofH are given in Table 5.8. 

The total transition rate (Ann') can be obtained by summing over the orbital 
angular momentum states: 

Similarly, the total oscillator strength Un'n) is given by 

1 
fn'n = a I:<U + 

n l,l' 

Since three separate transitions contribute to the Ha line (see Fig. 4.1), 

1 
f23 = + + 

= Ico)(o.4349) + (3)(0.01359) + (3)(0.6958)1 
4 

=0.6407. 

Similarly, f Hp has a value of 0.1193 and f Hy has a value of 0.04467. 

(5,102) 

(5,103) 

(5.104) 

(Sun Kwok)

Oscillator strength of Lyman- and Balmer-lines

σ0 = fji
πe2

mec

absorption cross section:



• Calculation of the emergent Balmer-line spectrum 
-  = the number of H  photons generated in the nebula per unit time by recombination and 

subsequent cascading. 

-  = total number of H  photons emitted in the nebula per unit time = sum of contributions 
from recombination and from resonance fluorescence due to Lyman-line photons, 

-  if there is no absorption of the Balmer-line photons 

- Since  and  are known from the recombination theory and the  is known from the 
Lyman-line solution, the  can be calculated, giving the emergent Balmer-line spectrum. 

- Note that , , , , and  are proportional to the total number of photons; the equations 
are linear in these quantities; and the entire calculation can therefore be normalized to any , 
for instance, , the number of H  photons if there were no absorption effects. 

- The results for H /H  and H /H  intensity ratios are shown in Figure as a function of 
.

Sn n

Kn n

Kn = Sn +
∞

∑
m=n

AmPm(Hn)

Sn Pm(Hn) Am
Kn

Rn Sn Jn Kn An
Sn

S4 β

α β β γ
τ0(Lyα)
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Figure 4.3 
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Radiative transfer effects caused by finite optical depths in Lyman and Balmer lines. Ratios 
of total emitted fluxes Ha/H,'l are shown for homogeneous static isothermal model nebulae 
at T = 10,000 K. Each line connects a series of models with the r01(La), given at the end of 
the line; along it r01(Ha) = 5 and 10 at the two points along each line indicated by bars for 
r01(La) 2: 400. 

the nebula at the center of La; and the transition from Case A ( r01 ---+ 0) to Case B 
( r01 ---+ oo) can be seen clearly. 

Although in most nebulae, the optical depths in the Balmer lines are small, there 
could be situations in which the density n (H0, 2 2 S) is sufficiently high that some self-
absorption does occur in these lines. The optical depths in the Balmer lines can again 
be calculated from Equation (4.45), and since they are proportional ton (H0, 2 2S), 
the radiative-transfer problem is now a function of two variables, r01 (La), giving the 
optical radius in the Lyman lines, and another, say, rO/(Ha), giving the optical radius 
in the Balmer lines. Although the equations are much more complicated, since now 
Balmer-line photons may be scattered or converted into Lyman-line photons and vice 
versa, there is no new effect in principle, and the same general type of formulation 
developed previously for the Lyman-line absorption can still be used. We will not 
examine the details here, but will simply discuss physically the calculated results 
shown in Figure 4.3. For rO/(Ha) = 0, the first effect of increasing rO/(La) is that 
L,B is converted into Ha plus the two-photon continuum. This increases the Ha!H,B 
ratio of the escaping photons, corresponding to a move of the representative point 
to the right in Figure 4.3. However, for slightly larger rO/(La), Ly photons are also 
converted into Pa, Ha, H,B, La, and two-photon continuum photons, and since the 
main effect is to increase the strength of H,B, this corresponds to a move downward 
and to the left in Figure 4.3. For still larger rO/(La), as still higher Ln photons are 

τ0(Hα) = 5

τ0(Hα) = 10

τ0(Lyα) =

[Figure 4.3] Radiative transfer effects caused by finite optical depths in Lyman and Balmer lines. 
Ratios of the emitted fluxes are shown for homogeneous static isothermal nebulae at  K. 
The figure demonstrates the transition from Case A ( ) to Case B ( ).

T = 104

τ0(Lyα) → 0 τ0(Lyα) → ∞

 Case A≈



• In most nebulae, the optical depths in the Balmer lines are small. However, there could be 
situations in which the density  is sufficiently high that some self-absorption 
does occur. 

• The RT problem of the Balmer lines is a function of , giving the optical radius in 
the Lyman lines, and , giving the optical radius in the Balmer lines. 
- The equations are much more complicated, since now Balmer-line photons may be scattered 

or converted into Lyman-line photons and vice versa. 
- The same general type of formulation for the Lyman-line absorption can still be used. 

• Figure 4.3 demonstrates the RT effect of H . 
- For , the effect of increasing  is that Ly  is converted into H  + two-

photon continuum. This increases the H /H  ratio.==> move to the right 

- For slightly larger , Ly  photons are converted into Pa , H , H , Ly , and two-photon 
continuum photons. The main effect is to increase the strength of H . ==> move downward 
and to the left. 

- For still larger , as still higher Ly  photons are converted. H  is also strengthened. ==> 
small loop as the conditions change from Case A to Case B. 

- For large , as , H  is merely scattered (because any Ly  photons it forms are 
quickly absorbed and converted back to H ), and H  is absorbed and converted to H  + Pa . 
This increases H /H  and H /H .

n(H0, 2 2S)

τ0(Lyα)
τ0(Hα)

α
τ0(Hα) = 0 τ0(Lyα) β α

α β

τ0(Lyα) γ α α β α
β

τ0(Lyα) n γ

τ0(Lyα) τ0(Hα) α β
α β α α

α β γ β
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Helium Energy Levels
• Helium (Grotrian diagram)

The states can be divided into two separate groups because of the selection rule .ΔS = 0
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4.6 Radiative Transfer Effects in He I
• He I singlets: 

- The recombination radiation of He I singlets is very similar to that of H I. Case B is a good 
approximation for the He I Lyman lines. 

• He I triplets: 
- Recombination to triplets tend to cascade down to . 

- The He   term is considerably more metastable than H  . Thus, the number density 
 is large and self-absorption effects are quite important. 

- Depopulation occurs (1) by photoionization, especially by H I Ly , (2) by collisional 
transitions (excitations) to  and , or (3) by the strongly forbidden  radiative 
transition.

2 3S
0 2 3S 0 2 2S

n(2 3S)
α

2 1S 2 1Po 2 3S − 1 1S
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for then, between any two points r 1 and r2 in the nebula, the relative radial velocity is 

(4.55) 

where s is the distance between the points and w is the constant velocity gradient. 
Thus photons emitted at r 1 will have a line profile centered about the line frequency 
vL in the reference system in which r 1 is at rest. However, they will encounter at r 2 
material absorbing with a profile centered on the frequency 

(4.56) 

and the optical depth in a particular direction to the boundary of the nebula for a 
photon emitted at r 1 with frequency v may be written 

(4.57) 

-  photons are scattered. 

-  photons can be either (1) scattered or (2) 
converted to three lines  + 

 +  by resonance 
fluorescence. 

- The probability of this conversion of  is 

. 

- At larger , still higher members of the  
series are converted into longer wavelength photons.

λ10830 (2 3S − 2 3Po)

λ3889 (2 3S − 3 3Po)
λ4.3 μm (3 3S − 3 3Po)

λ7065 (2 3Po − 3 3S) λ10830 (2 3S − 2 3Po)

λ3889 (2 3S − 3 3Po)
A3 3S, 3 3Po

A3 3S, 3 3Po + A2 3S, 3 3Po
≈ 0.10

τ0(λ10830) 2 3S − n 3Po



- The RT problem is very similar to that for the Lyman lines.
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Figure 4.5 
Radiative transfer effects due to finite optical depths in He I A.3889 2 3 S-3 3 P 0 • Ratios of 
emergent fluxes of>-. 7065 and A.3889 to the flux in >-.4471 are as a function of optical radius 
r0 (A.3889) of homogeneous static (cv = 0) and expanding (cv f=. 0) isothermal nebulae at 
T = 10,000 K. 

It can be seen that increasing velocity of expansion tends, for a fixed density n (2 3 S), to 
decrease the optical depth to the boundary of the nebula and thus to decrease the self-
absorption effects. This effect can be seen in Figure 4.5, where some calculated results 
are shown for various ratios of the expansion velocity uexp(R) = cvR to the thermal 
velocity u1h = (2kT f mHe) 112, as functions of Tot(A3889) = n(2 3S)Kot(A3889)R, the 
optical radius at the center of the line for zero expansion velocity. Note that the 
calculated intensity ratios for large uexp/u 1h and large To are quite similar to those 
for smaller uexp/u 1h and smaller T0 . 

4. 7 The Bowen Resonance-Fluorescence Mechanisms for O III and O I 

There is an accidental coincidence between the wavelength of the He II La line at 
A303.78 and the O III 2p 2 3 Pi-3d 3 Pf line at A303.80. As we have seen, in the He++ 
zone of a nebula there is some residual He+, so the He II La photons emitted by 
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for then, between any two points r 1 and r2 in the nebula, the relative radial velocity is 

(4.55) 

where s is the distance between the points and w is the constant velocity gradient. 
Thus photons emitted at r 1 will have a line profile centered about the line frequency 
vL in the reference system in which r 1 is at rest. However, they will encounter at r 2 
material absorbing with a profile centered on the frequency 

(4.56) 

and the optical depth in a particular direction to the boundary of the nebula for a 
photon emitted at r 1 with frequency v may be written 

(4.57) 

 = expanding velocity/thermal velocityω



• Line broadening 
- The thermal Doppler widths of He I lines are smaller than those of H I lines, because of the 

larger mass of He. Therefore, turbulent or expansion velocity is relatively more important in 
broadening the He I lines. 

• Consider a model spherical nebula expanding with a linear velocity of expansion 
(Hubble-like expansion). 

- , where  is the constant, radial velocity gradient. 

- Photons emitted at  will have a line profile centered at the line frequency  in the local rest 
frame. They will encounter at  material absorbing with a profile centered on the 
frequency 

, where  is the distance between the points. 

- The optical depth from  to the boundary of the nebula for a photon emitted at  with 
frequency  is 

. 

- Increasing velocity of expansion tends to decrease the optical depth to the boundary, and thus 
to decrease the self-absorption effects. See Figure 4.5 to see the expansion velocity effect.

Uexp(r) = ωr (0 ≤ r ≤ R) ω

r1 νL
r2 ( > r1)

ν′ (r1, r2) = νL (1 +
ωs
c ) s

r1 r1
ν

τν = ∫
r2=R

0
n(2 3S)k0l exp {−[ ν − ν′ (r1, r2)

ΔνD ]
2

} ds
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4.7 The Bowen Resonance-Fluorescence Mechanisms for O III and O I
• He II Ly  and O III 

- There is an accidental coincidence between the 
wavelengths of He II Ly   and O III 

 ( ) 

• In the He  zone, 
- there is some residual He , so He II Ly  emitted by 

recombination are scattered many times before they 
escape. 

- Consequently, there is a high density of He II Ly  
photons. 

- Since O  is also present in this zone, some of the 
He II Ly  photons are absorbed by it and excited 
the  level of O III. 

- This level quickly decays through a radiative 
transition, to (1)  with a probability 

 and , (2)  with 
 and , and (3)  with 
 and six wavelengths. The third route 

decays to lower levels. 

- These lines are observed in many planetary nebulae.

α

α λ303.78
λ303.80 2p2 3P2 − 3d 3Po

2
++

+ α

α

++

α
3d 3Po

2

2p2 3P2
p = 0.74 λ = 303.80Å 2p2 3P1
p = 0.24 λ = 303.62Å 3p 3LJ
p = 0.02
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Schematized partial energy-level diagrams of [0 III] and He II showing coincidence of He II La 
and [O III] 2p 2 3 P2-3d 3 PA.303.80. The Bowen resonance fluorescence lines in the optical and 
near-ultraviolet are indicated by solid lines, and the far-ultraviolet lines that lead to excitation 
or decay are indicated by dashed lines. There are six observable lines in all leading down from 
3d 3 Pf, and 14 from 3p 3 P2, 1, 3p 3 S1, and 3p 3 D3,2, 1, and with relative strengths that can be 
calculated just from the ratios of transition probabilities. 
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Figure 4.7 

Schematized partial energy-level diagrams of O I and HI showing the coincidence between 
HI L/3 and O I 2p 4 3 P2-2p 33d3 D3>.1025.76. The far ultraviolet lines that lead to excitation 
are indicated by dashed lines, and the cascade lines in the infrared, optical, and ultraviolet are 
indicated by solid lines. 

component in the observed strength of )..5876 in planetary nebulae. Some collision 
strengths for the excitation of He I levels with n = 3 are also listed in Table 4.13. 

Similar collisional-excitation effects occur from the metastable He0 2 1 S and H0 
2 2 S levels, but they decay so much more rapidly than He0 2 3 S that their populations 
are much smaller and the resulting excitation rates are negligibly small. 

A good general summary of the emission processes in gaseous nebulae is given by 
Seaton, M. J. 1960, Reports on Progress in Physics 23, 313. 

The theory of the recombination-line spectrum of HI goes back to the early 1930s and was 
developed in papers by H. H. Plaskett, G. G. Cillie, D. H. Menzel, L. H. Aller, L. Goldberg, 

• H I and O I 
- A second accidental near-coincidence occurs between 

H I Ly  1025.72 and O I 1025.76 
( ) 

• In the H  zone, 
- Some atomic oxygen exists, due to rapid charge 

exchange between O and H. 

- Excitation of  are followed by successive 
decays, producing 

- , 
,

 

- The ratio of the transition probabilities of the last three 
multiplet is 3.4:2.0:0.7.

β λ λ
2p4 3P2 − 2p33d 3Do

3
+

2p33d 3Do
3

λ11286.9 (2p33p 3P2 − 2p33d 3Do
3)

λ8446.36 (2p3s 3So
1 − 2p33p 3P2)

λ1302.17, 1304.86, 1306.03 (2p4 3P2,1,0 − 2p33s 3So
1)

H + O+ ↔ H+ + O
H ionization energy = 13.6 eV 
O ionization energy = 13.62 eV



• Coincidence of O III resonance line 374.432 with N III two resonance lines 374.434 
and 374.442

λ λ
λ
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Fig. 6. A partial Grotrian diagram of O iii that includes the most relevant
O1 transitions and the λ 3121.64 line belonging to the O3 process. The
level’s configuration can be read from Table 3. The y-axis is not scaled
linearly.

A less probable decay process from the aforesaid
2p3d3P2 level (total probability about 1.85%) is the cascade
through the high lying 2p3p 3P (E ∼ 37.23 eV), 2p3p 3S (E ∼
36.89 eV) and 2p3p 3D (E ∼ 36.45 eV) terms, by emission
of one of six subordinate lines (the primary cascade-decays) in
the near-UV optical region of the spectrum (from λ 2807.90 to
λ 3444.06). However, despite the low probability of the decay
channel through the subordinate lines, if the optical depth in the
He ii Ly-α line is very high the trapped He ii Ly-α photons are
repeatedly scattered and a significant fraction of them can be
converted into the fluorescent cascade of optical and ultravio-
let lines. Unlike the resonance and near resonance lines that are
scattered many times, the photons produced by these subordinate
transitions can easily escape from the nebula, and, together with
the subsequent cascades (the “secondary” decays), that produce
additional emission lines, (most of them in the optical U spectral
range), comprise the Bowen fluorescence lines (Bowen 1934).

Figure 6 represents a partial Grotrian diagram of O iii that
includes the most common Bowen O1 transitions. Figure 6 is
complemented by Table 3 that includes the configuration and
the energy (eV and cm−1) of the relevant levels.

In most planetary nebulae and symbiotic stars, the “effi-
ciency” of the Bowen mechanism, that is the fraction of He ii
Ly-α photons that is converted into O iii Bowen lines (mostly
a function of the He ii Ly-α optical depth) varies from object
to object and covers almost the whole range of possible val-
ues (Liu & Danziger 1993; Pereira et al. 1999). Therefore, the
Bowen mechanism can have a major influence on the fate of the
He ii Ly-α photons and consequently also on the photoioniza-
tion equilibrium in the nebula. Thus, a clear understanding of

Table 3. Configuration and energy of the relevant O iii Bowen fluores-
cence levels.

Level E(eV) E(cm−1)
2p3d 3P◦0 40.87 329 645.14
2p3d 3P◦1 40.86 329 583.89
2p3d 3P◦2 40.85 329 469.80
2p3p 3P2 37.25 300 442.55
2p3p 3P1 37.23 300 311.96
2p3p 3P0 37.22 300 239.93
2p3p 3S1 36.89 297 558.66
2p3p 3D3 36.48 294 223.07
2p3p 3D2 36.45 294 002.86
2p3p 3D1 36.43 293 866.49
2p4 3P1 35.21 283 977.4
2p4 3P2 35.18 283 759.7
2p3s 3P◦2 33.18 267 634.00
2p3s 3P◦1 33.15 267 377.11
2p3s 3P◦0 33.14 267 258.71
2s2p3 3S◦1 24.44 197 087.7
2s2p3 3P◦0 17.65 142 393.5
2s2p3 3D◦1 14.88 120 058.2
2s2p3 3D◦2 14.88 120 053.4
2s2p3 3D◦3 14.88 120 025.2
2p2 3P2 0.04 306.17
2p2 3P1 0.01 113.18
2p2 3P0 0.00 0.00

the Bowen mechanism is required for a correct interpretation of
the emergent UV and optical spectrum.

If the width of the He ii Ly-α line is large enough, an ad-
ditional fluorescence process might also be present i.e. the ex-
citation of the O iii (2p3d)3P1 level (v = −82 km s−1 from
He ii λ 303.782) due to the partial overlap of the exciting
He ii Ly-α with the λ 303.695 resonance line of O iii (O3 pro-
cess). In addition, if He ii Ly-α is even wider, then excitation
of the (2p3d)3P0 level by pumping in the resonance line at
λ 303.461 could also take place. This is a quite uncommon pro-
cess, since this line is at −250 km s−1 with respect to He ii Ly-α.
Thus, these two secondary Bowen fluorescence processes pro-
vide a convenient probe which measures the intensity of radi-
ation in the far wings of the unobserved He ii Ly-α line and
gives valuable information on its width. It is worth recalling
that Bhatia et al. (1982) in a study of the solar O iii spectrum
have pointed out the fact that the He ii Ly-α line is considerably
broader than the O iii lines.

It is important to note that while the lines in the primary cas-
cade from each (2p3d)3P0,1,2 level are individual, (e.g. λ 3132.79
from (2p3d)3P2 (O1), λ 3121.64 from (2p3d)3P1 (O3), λ 3115.68
from (2p3d)3P0) most of the lines in the subsequent cascades are
common to the three processes, although the dominant contribu-
tion comes from the O1 process.

We recall that a competitive charge-exchange mechanism
(CE) functions for some of the lines produced in the decay from
the 3D term (Dalgarno & Sternberg 1982), while the λ 5592.25
line (3s 1P◦–3p 1P, mult. 5) comes from charge-exchange only
(see Liu & Danziger 1993 and Kastner & Bhatia 1996, here-
inafter KB96 for details).

An accurate determination of the intensities of the pure
Bowen lines is fundamental for determining the relative con-
tribution by the various channels previously mentioned. KB96
have pointed out that a complete Bowen system has not yet
been observed because of inadequate coverage in wavelength,
lack of adequate spectral resolution, lack of accurate ELI, and

P. Selvelli et al.: The He ii Fowler lines and the O iii and N iii Bowen lines in RR Tel 727

emitted, and in the subsequent decay two additional lines at
λ 4097.36 and λ 4103.39 are produced. The relevant levels and
transitions are reported in Fig. 13 and Table 7. Each level has
also been identified by a number index from 1 to 7 in order
to facilitate reading the text. See also Kastner & Bhatia (1991)
(hereinafter KB91) and Kallman & McCray (1980) for further
theoretical considerations and quantitative evaluations.

These optical N iii lines are observed as quite strong emis-
sion lines in planetary nebulae, X-ray binaries, symbiotic stars
and novae in the early nebular stages.

KB91, however, from a direct comparison of the observed
line ratios with the theoretically predicted ratios expected from
the postulated Bowen process of selective photoexcitation, have
challenged the common interpretation that these N iii emission
lines originate from a secondary Bowen fluorescence. Their
main argument against Bowen fluorescence is that the observed
I4634/I4640 ratio indicates a relative population ratio N6/N7 close
to the “statistical” value 0.667 (where level 6 is 3d 2D3/2 and
level 7 is 3d 2D5/2, see also Fig. 13). Instead, in the case of
Bowen fluorescence, a much lower value (about 1/9) is ex-
pected as a consequence of the fact that A2,19/A2,20 ∼ 0.167
and g19/g20 = 4/6. KB91 did not indicate which physical pro-
cess could be responsible for the thermal population ratio that
apparently existed. After tentatively suggesting recombination
and charge-exchange, they ruled out both processes after spe-
cific considerations.

In a subsequent paper, Ferland (1992) suggested that the op-
tical N iii lines could be excited by direct continuum fluores-
cence (CF). While the Bowen mechanism would pump both the
3d 2D3/2 and 3d 2D5/2 levels from the excited level 2p 2P3/2
of the ground term (with the Ai j and g factors favoring
level 3d 2D5/2 over level 3d 2D3/2) continuum fluorescence
would pump the level 3d 2D5/2 from the excited level of the
ground term and the 3d 2D3/2 level predominantly from the
ground level 2p 2P1/2 of the ground term, (via the 374.198 tran-
sition) with a minor contribution (about 20%) from the excited
level. As a result, (the Ai j of the transition from the 2P1/2 level
of the ground term being comparable to that of the transition
from the 2P3/2 level) the relative population of the 3d 2D5/2 and
3d 2D3/2 levels would become comparable, with the same result
for the intensities of the three decay lines near λ 4640, thus rec-
onciling the predicted intensities with the observations.

In a very recent paper, Eriksson et al. (2005) have pre-
sented a set of semi-empirical equations for the prediction of
the relative intensities for the N iii lines that are generated by
the Bowen mechanism. They have also suggested an additional
pumping channel associated with the O iii λ 374.162 line (one
of the six resonance lines in the final decay of the primary
Bowen mechanism) that could pump the N iii λ 374.198 line.

Eriksson et al. have obtained the intensities of the
O iii Bowen excited lines (2800–3900 Å) from IUE data of 1993
and ground-based data of the same year (Mc Kenna et al. 1997).
The N iii line intensities have been obtained also from Mc Kenna
et al. (1997). Instead, the line widths for the O iii and N iii lines
and the relative velocity shifts have been obtained from IUE data
(SWP29535) of 1986 (see Sect. 6.4 for further comments).

In the case of RR Tel, Eriksson et al. have predicted a line
ratio (relative strength) I4634/I4640 = 0.245, which is too low
relative to their observed values (=0.47), and have ruled out
this additional line fluorescence channel as the main one re-
sponsible for populating level 6. They have concluded that the
two 3d 2D3/2,5/2 levels are predominantly populated by processes
other than the Bowen mechanism and have suggested that radia-
tive recombination could be the main population process of these

Fig. 13. A partial Grotrian diagram for N iii. Levels are identified by
a number index 1–7 to facilitate reading the text.

levels, although, as they pointed out, this process cannot explain
some discrepancies between the predicted and observed relative
intensities of the 4641.85 and 4640.64 lines.

6.2. The N III lines intensities in RR Tel

ELI and FWHMs for all N iii subordinate lines specifically in-
volved in the Bowen fluorescence process have been measured
in STIS and FEROS spectra.

We note (see also Sect. 2.1) that the STIS data are abso-
lutely calibrated but suffer from a limited spectral resolution
in the optical range (about 8000). Instead, the FEROS data
are not absolutely calibrated but have higher spectral resolution
(about 60 000). Thus, STIS data provide a quite good estimate
of the absolute line flux, while the FEROS data provide very ac-
curate line ratios and good FWHMs measurements.

The re-calibration of FEROS (see Sect. 2.4) has also al-
lowed us to obtain reliable ELI and reliable line ratios for a few
N iii emission lines that are clearly observed on FEROS but are
not detected or are confused with noise in the STIS grating spec-
tra in the optical range.

Table 7 gives the measurements for the individual lines and
their average (STIS and FEROS) intensities relative to the ref-
erence line λ 4640.64. The intensity of the 4103.39 line is
rather uncertain because it falls on the red wing of the strong
Hγ line. The data also indicate that I4640.64/(I4641.85+I4634.13) =
1.59 and I4634.13/I4640.64 = 0.49, close to the value (0.47) found
by Eriksson et al. (2005).

The N iii lines have FWHM values near 33.2 km s−1, a value
that is close to that (35.3 km s−1) found for the O iii Bowen lines.
The average relative displacement (O iii – N iii) is −1.45 km s−1

(Eriksson et al. instead found 4–5 km s−1).

Selvelli et al. (2007, A&A, 464, 715)



4.8 Collisional Excitation in He I
• Collisional excitation of H is negligible in comparison with recombination in populating 

the excited levels in H II regions and planetary nebulae. 
- This is because the threshold for even the lowest level ( ) at 10.2 eV is large in comparison 

with the thermal energies at typical nebular temperatures. 

• In He0, the  level is highly metastable, and collisional excitation from it can be 
important. 

- In particular, collisional excitation to  is important and leads to emission of He I . 

- In a sufficiently dense ( ) nebula, the main mechanism for depopulating  is 
collisional transitions to  and . 

- The equilibrium population in  is given by the balance between recombination to all triplet 
levels (which eventually cascade down to ), and collisional depopulation of . 

 

- The rate of collisional population of  is then 

 

- The recombination rate is . At a typical temperature  K, the ratio of 
collisional excitation to recombination is about 8. In other words, collisional excitation from 

 completely dominates the emission of .

n = 2

2 3S

2 3Po λ10830 Å
ne ≫ nc 2 3Po

2 1S 2 1P
2 3S

2 3S 2 3S
nen(He+)αB(He0, n 3L) = nen(2 3S)[q2 3S, 1 1S + q2 3S, 2 1Po]

2 3Po

nen(2 3S)q2 3S, 2 3Po =
nen(He+)q2 3S, 2 3Po

[q2 3S, 1 1S + q2 3S, 2 1Po]
αB(He0, n 3L)

nen(He+)αeff
λ10830 T = 104

2 3S λ10830
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- Although the collisional transition rates from  to  and  are smaller than to , 
the recombination rates of population of these singlet levels are also smaller, and the collisions 
are also important in the population of  and .

2 3S 2 1S 2 1Po 2 3Po

2 1S 2 1Po
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