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- Intrinsic Line Profile
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- Curve of Growth
-H 121 cmline
- Cold Neutral Medium & Warm Neutral Medium




Line Profile; Classical model

 [orentz Oscillator Model to describe the interaction between atoms and

electric fields

- The electron (with a small mass) is bound to the nucleus of the atom (with a
much larger mass) by a force that behaves according to Hooke’s Law (a

spring-like force).

- An applied electric field would then interact with the charge of the electron,
causing “stretching” or “compression” of the spring.

- The electron’s equation of motion:

Here, m = electron mass

mx = —kx + Fext + Frad

k = mw; , where k = spring constant

Frad —

wo = natural (fundamental or resonant) freqency

external force, driving force, or external electric field
radiation reaction force (radiation damping)

the damping of a charge’s motion which arises because of
the emission of radiation



4 [1] Spontaneous Emission : Damping, Free Oscillator

Undriven Harmonically Bound Particles (free oscillator)

Since an oscillating electron represents a continuously accelerating charge, the
electron will radiate energy.

The energy radiated away must come from the particle’s own energy (energy
conservation). In other words, there must be a force acting on a particle by virtue
of the radiation it produces. This is called the radiation reaction force.

Let’s derive the formula for the radiation reaction force from the fact that the energy
radiated must be compensated for by the work done against the radiation reaction
force.

On one hand, the radiative loss rate of energy, averaged over one cycle of the
oscillating dipole, can be represented by the radiative reaction force:

AW
L (F,. -5
o = Frad %)

On the other hand, from the Larmor’s formula for a dipole, the radiative loss will be:

aw 2% (|%]*) aw 87rw462‘j(w)‘2
dt 3¢3 dw 33

angular frequency : w = 27v



5 [1] Spontaneous Emission : Abraham-Lorentz formula

2e? <\X\2>
3c3

<Frad ) X> —

Here, <|>':;\2>z; .,

177
:li-k[/f/z——/ X - xdt
T T J—7/2

T/2
! / X - Xdt where 7 is the oscillation period.

We assume that the initial and final states are the same: x-x(—7/2) =% - x(7/2)

Then,
2¢? (X - X)

) 1T L ,
<‘X‘2>:—;/ /2X-th:—<x-x> — (Fraq - X) = 3.3

2¢2X

3c3

: Abraham-Lorentz formula

Therefore, we can obtain F.q=



Abraham-Lorentz formula:

2¢2X
3c3

Frad —

- This formula depends on the derivative of acceleration. This increases the degree of

the equation of motion of a particle and can lead to some nonphysical behavior if not
used properly and consistently.

For a simple harmonic oscillator with a frequency @, , we can avoid the difficulty by
using

2(t) = o cos(wot) #(t) = —wiz(t)

&(t) = —wox sin(wot) B (t) = —w2i(t)

% =~k —

This is a good assumption as long as the energy is to be radiated on a time
scale that is long compared to the period of oscillation (y < ). In this regime,

radiation reaction may be considered as a perturbation on the particle’s motion.
We then rewrite the radiation reaction force as

e 2e2 w3 :
F,q=— Ux = —mys = 0 mpin nstant
ad 33 X max, Y=o damping consta
k mX + kx+myx =0
| VAN m 1./vf[;c’[ion

This is the equation for a string-mass
system subject to friction damping.



- Therefore, the equation of motion of the electron in a Lorentz atom is
X+ yx +wsx =0

- This equation may be solved by assuming that z(¢) oc e*.

Pt yatwd=0 = a=—(7/2)+/(1/2)? — 3 o
= —7/2 % iwg + O(y? /wf) ’ “\{Y exp(—yt/2)

Here, we assumed y < ),
- Assuming initial conditions: z(0) = =, ©(0) =0at t =0 V V VLV p

- we have U

_ —(y2 —iwg)t 4 ,—(r12+iwe)t| —  ,—yt2
x(t)_axo [e (r/2 = iwo)t 4 o= (7 l“"))] = Xpe """ coswy! —»  This is a damping oscillator.

« Power spectrum:

T(w) = % /OOO z(t)e ™ dt = jf; [7/2 — z'(lw + wo) " v/2 — Z'(lw - wo)]

- This becomes large in the vicinity of w = wp and w = —wy .

- We are ultimately interested only in positive frequencies, and only in regions in which the values
become large. Therefore, we obtain

_ T 1 vz (To)? L
)~ o v/2 — i(w — wp)’ Zwl” = <47T) (W —wo)? + (7/2)°




- Spontaneous Emission: Line profile

Recall the Larmor’s formula: ;o 4 S
—_— = e |(r\w
dw 3c3
Energy radiated per unit frequency:
dW  8mw® e’xj 1 1 w* 2 v /27
do 3¢ (4m)? (w—wo)2+(7/2)2 2 \wg/ " (w—wo)?+ (7/2)?

SR T
U (w = wo)? + (7/2)?
2

2
For a harmonic oscillator, note that the equation of motionis F = —kx = —mwix,

spring constant is k =mwg , and the potential energy (energy stored in spring) is
(1/2)kag,

From o0 v/ 27 1 =119 — w o _
/_oo (w—wo)? + (7/2)2‘&" = —tan™ {2 0)/7}HZ =1

Note that the total emitted energy is equal to the initial potential energy of the
oscillator:

W = / —dw = —kxo

. . 2 .
Profile of the emitted spectrum: | ¢(w) = o w(j)é j: CIE ;li':;Splfotf?lz Lorentz (natural)




- Damping constant is the full width at half maximum (FWHM).

> W

A
/2w
") = w2 + (/2P e 1
v /Am %
Y= ) (/A d - S
"
Note ¢(w)dw = ¢(v)dv }

L]

- The line width Aw = y is a universal constant when expressed in terms of

wavelength:
\ = 2me (w = 27v)
)
A 27, 2
A)\ZQWC—ZJZQTFC—T— 4+ (Aw:y:greﬂ>
W 3 ¢ 3 ¢
4
= —TT,
3
= 1.2 x 107 %A

However, in Quantum Mechanics, the line width is not a universal constant.
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[2] Absorption/Scattering : Driven Oscillator

- Driven Harmonically Bound Particles (forced oscillators)

—_ it
ext — eEOe

X—|—’7X—|—(U8X:——€w}t k ex
m e P friction

- A particular solution for this inhomogeneous differential equation:

- Electron’s equation of motion (electric charge = —e): F

X — Xoezwt — ‘Xo‘ez(wt—l—é) N (_w2 + iwy 4 wg)Xoezwt _ _6 OBzwt
m
X — (e/m)Eq
D (W2 —wd) —iwy

2

- W
xo = |x0/€”® x (w? —wd) +iwy — §=tan"? ( 5 i )

The response is slightly out of phase with respect to the imposed field.

- Time-averaged total power radiated is given by

P = <dW> _ 2 (X)) etutxof?

dt 3¢3 3¢
et B2 w?

3m2c? (w? — wd)? + (wy)?




 Scattering cross section:

Poynting flux:
(P)

Osca = v <S> p— 8%E(2) > asca(w) = —

(S)

o/or
A

i Classical radiation
: reaction invalid

At this regime, ionization and excitation to
higher energy levels will occur.

> w/wy
1 wmax/w() wc/wo
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» Limiting Cases of Interest

(a).w > wy (Thomson scattering by free electron) [ 6., = Op = ﬁrz J

» At high incident energies, the binding becomes negligible. Therefore, this corresponds to
the case of a free electron.

4 4 )
4
(b).w < @, (Rayleigh scattering by bound electron) Y N T Ao
sca T W T J)
\ J

» Rayleigh scattering refers to the scattering of light by particles smaller than the
wavelength of the light.

» The strong wavelength dependence of the scattering means that shorter (blue)
wavelengths are scattered more strongly than longer wavelengths.

» (blue color of the sky) The dependence results in the indirect blue light coming from all
regions of the sky.

» (red color of the sun at sunset) Conversely, glancing toward the Sun, the colors that were
not scattered away - the longer wavelengths such as red and yellow light - are directly
visible, giving the Sun itself a slightly yellowish color.

» However, viewed from space, the sky is black and the Sun is white.
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- Absorption/Scattering : Line Profile

(c) ® ~ w, (resonance scattering of line radiation)

() W Note that v = w/2x and 6, = 2ro,,
Oscal\W) ~ O
" (@ = w0)?(2w0)? + (wo7)? -
w2 /4 2nce yl2r
= O =
T =wo2 + (7/2)? T me (@ = ol + (7/2)
2 2
w8_87<€2)2xlx(3777»03)_22@2(/2) G:ﬂe yl4rn
T4 T3 \me 4 5620.)8 e e Y m,c (v — 1/0)2 + (}//471')2

» In the neighborhood of the resonance, the shape of the absorption/scattering cross-section is
the same as the (spontaneous) emission line profile from the free oscillator. We already
obtained the same conclusion, in the previous lecture.

o0 71'62
o dy = —

0 m,c

» Total scattering cross section is

« Resonance line

- A spectral line caused by an electron jumping between the ground state and the first
energy level in an atom or ion. It is the longest wavelength line produced by a jump to or
from the ground state.

- Because the majority of electrons are in the ground state in many astrophysical environments,
and because the energy required to reach the first level is the least needed for any transition,
resonance lines are the strongest lines in the spectrum for any given atom or ion.
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- In the quantum theory of spectral lines,

we obtain similar formulas, which are
conveniently stated in terms of the
classical results as

e’ ylA?
" m,c (Vv — vy)? + (y/4rx)?

° e’

O-ydy = Jnn'—

0 m,c

where f . is called the oscillator

strength or f-value for the transition
between states n and n’.

Selected Resonance Lines® with A < 3000 A

Configurations ¢ u E¢/hc(cm™)  Avac(A)  fru
CIV 15225 — 1522p ’S172 PP, 0 1550.772  0.0962
2S172 Pg, 0 1548.202  0.190
NV 1525 — 1s%2p 2S172 PP, 0 1242.804  0.0780
’S172 °P3), 0 1242.821  0.156
OVI 1522s — 1s%2p ’S172 °PP, 0 1037.613  0.066
’S172 ?Pg), 0 1037.921  0.133
cHI 252 — 252p 1S lpo 0 977.02 0.7586
cl 2522p — 252p? PP, D3, 0 1334.532  0.127
Py, DS, 63.42 1335708 0.114
NIII 2522p — 252p? PPy, D3y 0 989.790  0.123
P9y °Dg), 174.4 991.577  0.110
CI 2522p2% — 2522p3s 3Py 3pp 0 1656.928  0.140
Py 5pg 16.40 1656.267  0.0588
3Py 3pp 43.40 1657.008  0.104
NII 2522p? — 2s2p3 3Pg 3DP 0 1083.990  0.115
3Py DS 48.7 1084.580  0.0861
P,  8DY 130.8 1085.701  0.0957
NI 2s5%2p° —2s%2p%3s 4S9,  “Ps)p 0 1199.550  0.130
'S5, ‘P 0 1200223 0.0862
01  2s522p* —2522p33s 3P, 38y 0 1302.168  0.0520
5Py 5S¢ 158.265 1304.858  0.0518
3Py 35p 226.977 1306.029  0.0519
Mgll 2p03s — 2p%3p S1 /9 2P1°/2 0 2803.531  0.303
2S172 Pg, 0 2796.352  0.608
AlIIl 2p83s — 2pS3p S1 /2 21310/2 0 1862.790  0.277
’S172 P, 0 1854716 0.557

Table 9.4 in [Draine]
See also Table 9.3
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[3] Line Broadening Mechanisms

- Atomic levels are not infinitely sharp, nor are the lines connecting them.

(1) Doppler (Thermal) Broadening

(2) Natural Broadening

(3) Collisional Broadening

(4) Thermal Doppler + Natural Broadening
- [1] Doppler (Thermal) Broadening

- The simplest mechanism for line broadening in the Doppler effect. An atom is in thermal
motion, so that the frequency of emission or absorption in its own frame corresponds to a
different frequency for an observer.

- Each atom has its own Doppler shift, so that the net effect is to spread the line out, but not
to change its total strength.

- The change in frequency associated with an atom with velocity component v, along the
photon propagation direction (say, z axis) is, to lowest order in v_/c, given by

Uy
V —1Vyg —Vyg—
C
_ 1Y 1 VoV,
Recall Doppler shift: | — = s v (l cos) — v—uyy=
PP vg v (1 —Bcosh) oL +5 ) ° c

- Here, 1 is the rest-frame frequency.
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We need to consider the velocity distribution of atoms. The number of atoms having
velocities in the range (v,, v, + dv,) is proportional to

2 2

m \ 1/2 mu 1 v
2)AV, = — ) dv, = ___z dv.,
f(vz)dv (%kT) eXp( sz) ? V2T Vs eXp( 202 ) ?

rms

From the Doppler shift formula, we have Here, m = mass of the atom

— d
y — c(v —1p) L du, = W
Vo o

Therefore, the strength of the emission is proportional to

2 20, \2
exp (_mvz> dv, = < exp [— me” (v — vo) ] dv

2T 0 2V§kT
Then, the normalized profile function is (Urms _ kT )
m
1 2 2 _ Uth :
P(v) = o—(v=10)?/(Avp)?  where Avp = vp— is the Doppler width.
AVDﬁ C
o 2KT \/ivrms
p— = 1

C m C
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Numerical value of the velocity broadening is

2k T 1/2 » T \NY2 /o \ "2
= = 1.3k — —
oth < m > 5 ms 100 K my

In addition to thermal motions, there can be turbulent velocities associated with
macroscopic velocity fields. The turbulent motions are accounted for by an effective
Doppler width.

Avp = Voé Note that the convolution of
C two gaussian functions is a

/9 9 1/2 gaussian.
b= (vth - vturb)

where viurh is /2 times a root-mean-square measure of the turbulent velocities. This
assumes that the turbulent velocities also have a Gaussian distribution.
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- [2] Natural Broadening

- The intrinsic line width of a line is due to the Heisenberg uncertainty principle. If an
energy level u has a lifetime At, then uncertainty (spread) in energy AE must be
AE ~ h/At (h = h/27x), and the resulting spread in the frequency of emitted photons is

Av = AE/h.
(1) Line width due to the uncertainty principle: (2) Line width of the Lorentz function:
o 5 = yl4n?
‘-’-‘“ === u (upper level) YT W= 1p)? + (y/Am)?
hig A = Alt In terms of the line width Av,, the
_l ! normalized Lorentz profile can be
_____________________ I (lower level rewritten as
( ) y 1 Av, /2
A, = decay rate v RS >
= decay probability per unit time, Einstein A coefficient. 2m (v UO) T (AUM/Z)
Hence, the FWHM of the Lorentz
AE, = uncertainty in energy of u function: Av, = y/2x
At, = the uncertainty in time of occupation of u l
Ay, = spread in frequency Comparing (1) and (2), we find that
= AE, /h=1/2nAt) = A, /(2n) » |y is equivalent to the the Einstein
A-coefficient., i.e.,y = A,;.




Classical physical Meaning

Suppose that the electric field is of the form e 7> and

then the energy decays proportional to e 7.
X

af

~

We then have an emitted spectrum determined by the
decaying sinusoid type of electric field.

lts Fourier transform (spectral profile) is a Lorentz (or
natural, or Cauchy) profile:

B yl4n®
B (v — vy)? + (y/4m)?

D
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Semiclassical (Weissokpf-Woolley) Picture of Quantum Levels

* In the semiclassical picture, each level is viewed as a continuous distribution of sublevels with
energies close to the energy of the level (E,).

The distribution of sublevels are explained by the Heisenberg Uncertainty Principle. The level has
a lifetime Atz = 1/A (A = Einstein A coefficient) and a spread in energy about AE =~ h/At = hA.

AEAt ~ h o

The ground level has no spread in energy

because At = 0.

The atom 1is in a definite sublevel of some level.

Ly

A transition in a spectral line 1s considered to be an instantaneous transition between a definite
sublevel of an initial level to a definite sublevel of a final level.

The energy spread of a sublevel is described by a Lorentzian profile.
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» The intrinsic line widthisy =4,
- This means forbidden lines are intrinsically narrower than permitted lines.

- For instance, the permitted Ly line has A, /v, ~ 3 x 1077, while the forbidden
[OI11] 5007A is has a tiny width A,¢/vue ~ 3 x 10717

- The intrinsic line width of [O 11[] 5007A is equivalent to the Doppler broadening of

Av

Avp = Vug == —> Av~3x107" ¢~ 10nms ' ~30cmyr !

- For a multiple-level absorber, the upper and lower can both be broadened by
transitions to other levels.

Yul = Z Al Z Ay y

Ej<E'u Ej<Eg
Yut
- ForLya (n =1-2), v, = A1 = 6.3 x 10871

Av/v ~ 4 X 1078

- ForHa (n=2-3), ~ur = Aso + As; + As; =89 x 10851

Av/v ~3x 1077 / - x
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- [3] Collisional Broadening (or Pressure Broadening)
- The Lorentz profile applies even to certain types of collisional broadening mechanisms.

- If the atom suffers “elastic” collisions with other particles while it is emitting, the phase of the
emitted radiation can be altered suddenly. If the phase changes completely randomly at the
collision times, then information about the emitting frequencies is lost.

- If the collisions occur with frequency v, that is, each atom experiences v, collisions per

unit time on the average, then the profile is

B I'/4x*
(v —vp)? + ([/4rn)?

/\ /\ [\ /\ purely sinusoidal
U U U \

i |
/\ ll’\ f ) /\ , random phase interruptions
\i \/ E/ \/ by atomic collisions

For derivation of the above formula, see Problem 10.7 of Radiative Processes in Astrophysics [Rybiki & Lightman], Chap. 11 of
Atomic Spectroscopy and Radiative Processes [Degl’innocenti], and Chap 8.3 in Theory of Stellar Atmospheres [Hubeny & Mihalas]

P,

where I'=y+2v

l
i
|
t1

)



23

- [4] Voigt profile : Thermal + Natural broadening

- Atoms shows both a Lorentz profile plus the Doppler effect. In this case, we can write
the profile as an average of the Lorentz profile over the various velocity states of the
atom. Let’s assume that the photon propagates along the z-axis.

Change of variables for the Maxwell distribution: vy, = ,/Q%T, y = ;_h
_ 1 2 - L 1 2
fo. = Y (2kT/m)1/2 exp (—muvZ /2kT) > [y = 7 exp(—y~)

To interact with an atom with velocity v-, the photon central frequency should be o + vo(v./c).
Then, the Lorentz profile at the frequency v =v — [vg + vo(v./c)] = (v — 1) — vo(ven/c)y  is supposed
to be multiplied with the Maxwell distribution.

dv Uth
Change of variables for the Lorentz function: %‘ = qﬁ% d_y = gbI; X <y0%>
— — I'/4
Let AI/DEVOUt—h,UEV L Voc,a: [Am
Avp Y0  Uth Avp

C
b() = /_ o 1, dy

o Uth I /4 1 ,
i /—OO (VO ¢ ) (v — 1) — vo(vm /e)y]” + (T /4m)? (Wl/z) xp (~v7) dy




- The profile can be written using the Voigt function.

o) = = H (w0

Here, a is a ratio of the intrinsic
broadening to the thermal broadening.

u IS a measure of how far you are from
the line center, in units of thermal
broadening parameter.

In terms of Doppler velocity, « can be
expressed as
V — 1)

u = p—
Avp o Uih

V —1y C

In the velocity term,

(% V — 1)
u = —, wWhere v =
Uth o

C

Voigt-Hjerting function:

2
a [T e Ydy
Hlwa) =2 /oo (u—y)* +a?

T

‘= 47TAVD
vV — 1)y
U =
AVD
2KT
AVD = i
C m

Including the turbulent motion,

Uih b
Avp = vg— — Avp = 1g-
c c

_ 2 2 _
where b = \/v§ + Vf ., Uth =

u =

Y
b




Properties of Voigt Function

- For small a, the “core” of the line is dominated by the Gaussian (Doppler) profile,
whereas the “wings” are dominated by the Lorentz profile.

a [ e_dey
H(u,a) = —/ —
TJ) o (U—y)+a

I I 1 T
1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.30 7] — ; i 1 -
: 0=153 v=000 Gaussian core
0.25 - ——0=130 y=050 [ 0.1 L
6=100 y=1.00 2
: ——06=0.00 y=1.80 _
0.20—_ 0.01 &
i 5 -
0.15 1
1 0.001 -
: - . \\\\!_orent2|an wing ] -
0.10 = - '\.'. \"‘\\-_\_\\‘ X —2 n
: 0.0001 \ T U
: - ol|\ — B
0.05 - : ol T
i 107° & . '\\ T
0.00 i F R L 1
Y= 0 2 4 6 8 10

-10 U frequency

- Inmostcase,a < 1. ForLyaat 7 =100 K, a ~ 0.05.
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« Line center:
2

H(0,a) = exp (a”) Erfc (a) ~ 1 — ﬁa +a* — O(a®)

- Taylor series expansion of the Voigt function :

oo —y2d
H(u,a)zg/ c Y

T ) (u—1y)% +a?

- Near the line center (u — 0), the contribution to the integral is dominated by y = u.
Therefore,

a < d
— O

which is known as the Doppler core.

- In the line wings away from the core (1 >> 1), the integral is dominated by y ~ 0
because of the rapidly decreasing function in the numerator.

H(u,a) ~ g/OO e dy _ayr__a

u? Tu?  Jmu?

— 00
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In summary, we obtain the Voigt function in a Taylor series expansion around

a=0.
dH 2 1
H(u,a)mH(u,O)+a%a:0%e —|—a\/%u2

- The first term represents the Gaussian core, provided by the thermal broadening, and
the second term represents the Lorentizan damping wing.

Transition from Doppler core to damping wing can be found by solving:

e = ﬁuz —~ wuw’=1In (ﬁ> + In u? for hydrogen
a a _ 1/2
b=13kms™ ' (T/10*K)
- The solution for this transcendental equation for Lyx is /

8 o—1
P 0.5 2 T [(6.265 x 108s ) (1215.67A> ( b _1)]
Yul )\uﬁ 10 km s

provided that the quantity in square brackets is not very large or very small. The
damping wing for |u| > 3.2 or velocity shifts |v| > 3.2 (b/10kms ™).
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Voigt Line Profile

- The profile can be written using the Voigt function.

o) = AV; = H(u.0)

Here, a is a ratio of the intrinsic
broadening to the thermal broadening.

u IS a measure of how far you are from
the line center, in units of thermal
broadening parameter.

In terms of Doppler velocity, « can be
expressed as
V — 1)

u = p—
Avp o Uih

V —1y C

In the velocity term,

(% V — 1)
u = —, wWhere v =
Uth o

C

Voigt-Hjerting function:

2
a [T e Ydy
Hlwa) =2 /oo (u—y)* + a?

T

‘= 47TAVD
vV — 1)y
U =
AVD
2KT
AVD = i
C m

Including the turbulent motion,

Uih b
Avp = vg— — Avp = 1g-
c c

_ 2 2 _
where b = \/v§ + Vf ., Uth =

u =

Y
b




Properties of Voigt Function

- For small a, the “core” of the line is dominated by the Gaussian (Doppler) profile,
whereas the “wings” are dominated by the Lorentz profile.

a [ e_dey
H(u,a) = —/ —
TJ) o (U—y)+a

I I 1 T
1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.30 7] — ; i 1 -
: 0=153 v=000 Gaussian core
0.25 - ——0=130 y=050 [ 0.1 L
6=100 y=1.00 2
: ——06=0.00 y=1.80 _
0.20—_ 0.01 &
i 5 -
0.15 1
1 0.001 -
: - . \\\\!_orent2|an wing ] -
0.10 = - '\.'. \"‘\\-_\_\\‘ X —2 n
: 0.0001 \ T U
: - ol|\ — B
0.05 - : ol T
i 107° & . '\\ T
0.00 i F R L 1
Y= 0 2 4 6 8 10

-10 U frequency

- Inmostcase,a < 1. ForLyaat 7 =100 K, a ~ 0.05.
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« Line center:
2

H(0,a) = exp (a”) Erfc (a) ~ 1 — ﬁa +a* — O(a®)

- Taylor series expansion of the Voigt function :

oo —y2d
H(u,a)zg/ c Y

T ) (u—1y)% +a?

- Near the line center (u — 0), the contribution to the integral is dominated by y = u.
Therefore,

a < d
— O

which is known as the Doppler core.

- In the line wings away from the core (1 >> 1), the integral is dominated by y ~ 0
because of the rapidly decreasing function in the numerator.

H(u,a) ~ g/OO e dy _ayr__a

u? Tu?  Jmu?

— 00
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In summary, we obtain the Voigt function in a Taylor series expansion around

a=0.
dH 2 1
H(u,a)mH(u,O)+a%a:0%e —|—a\/%u2

- The first term represents the Gaussian core, provided by the thermal broadening, and
the second term represents the Lorentizan damping wing.

Transition from Doppler core to damping wing can be found by solving:

e = ﬁuz —~ wuw’=1In (ﬁ> + In u? for hydrogen
a a _ 1/2
b=13kms™ ' (T/10*K)
- The solution for this transcendental equation for Lyx is /

8 o—1
P 0.5 2 T [(6.265 x 108s ) (1215.67A> ( b _1)]
Yul )\uﬁ 10 km s

provided that the quantity in square brackets is not very large or very small. The
damping wing for |u| > 3.2 or velocity shifts |v| > 3.2 (b/10kms ™).
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[Q5] Voigt profile

- We want to derive an approximate formula for the transition point from the Gaussian core to
the Lorentz wing, which 1s defined by

u? =In (vV7/a) + Inu? or z=In(v7/a)+Inz, where z = u’
The above equation can be expressed in the form:

x = g(x) where g(z) = Inz + In (v/7/a)

This equation can be solved using “Fixed Point Iteration Method.” Starting from any 1nitial
point x¢ , the following recursive process gives an approximate solution of the equation.

Lpn+1 = g(xn>

(1) Find a numerical solution x. for Ly line with b = 10km s™!, which is appropriate for Ly in
the WNM with 7'~ 10000 K.

(2) Let’s denote the width parameter as a. for b = 10kms™!. This means that

T, =Inxz, + In (ﬁ/a*)
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Now, for any parameter a which is different from a., you may express the constant term in
as followg(x)

In (v7/a) =In(as/a) +1In (V7 /a,)

To find the solution for a # a, (but, a = a.), choose an initial guess to be o = ZT«. Show
that the solution for any a can be expressed as (after only a single iteration):

r1 = x4+ In(as/a)

Insert numerical values into the above equation and compare it with Eq. (2.39) in Ryden’s book
(our textbook).

(3) Insert numerical values into the above equation compare it with the results in this lecture
note and Eq. (6.42) in Draine’s book.



