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[3] Line Broadening Mechanisms

- Atomic levels are not infinitely sharp, nor are the lines connecting them.

(1) Doppler (Thermal) Broadening

(2) Natural Broadening

(3) Collisional Broadening

(4) Thermal Doppler + Natural Broadening
- [1] Doppler (Thermal) Broadening

- The simplest mechanism for line broadening in the Doppler effect. An atom is in thermal
motion, so that the frequency of emission or absorption in its own frame corresponds to a
different frequency for an observer.

- Each atom has its own Doppler shift, so that the net effect is to spread the line out, but not
to change its total strength.

- The change in frequency associated with an atom with velocity component v, along the
photon propagation direction (say, z axis) is, to lowest order in v,/c, given by

Uy
V —1Vyg —Vyg—
C
_ 1Y 1 VoV,
Recall Doppler shift: | — = s v (l cos) — v—uyy=
PP vg v (1 —Bcosh) oL +5 ) ° c

- Here, 1 is the rest-frame frequency.



We need to consider the velocity distribution of atoms. The number of atoms having
velocities in the range (v,, v, + dv,) is proportional to

m \1/2 mu?
f(vz)dv, = (QWkT) exp | — o | dvs Here, m = mass of the atom

From the Doppler shift formula, we have

= d
. C(VV W)y gy, — CV—V
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Therefore, the strength of the emission is proportional to

2 20, 1, \2
exp <_mfvz> dv, o< exp [— me” (v — vo) ] dv

2KT 208kT
Then, the normalized profile function is (Urms _ KT )
m
o(v) = Ay;ﬁe_(”_V°)2/(AVD)2 where| Avp = %vth is the Doppler width.

| 2KT
Vth = {/ —— 1is the thermal velocity.
m




- Numerical value of the velocity broadening is

okrT 1/2 » T \NY2 /o \ "2
= = 1. — —
oth < m > 3 ks 100 K MH

- In addition to thermal motions, there can be turbulent velocities associated with
macroscopic velocity fields. The turbulent motions are accounted for by an effective
Doppler width.

Avp = Voé
c

b= (vt2h - vt2urb) Y2

where viurh is /2 times a root-mean-square measure of the turbulent velocities. This
assumes that the turbulent velocities also have a Gaussian distribution.

The convolution of two Gaussian functions with the widths (standard deviations) o, and o, 1s a

. Gaussian function with the width of o, given by: o= +]o? Lo
; _ 1 2



- [2] Natural Broadening

- The intrinsic line width of a line is due to the Heisenberg uncertainty principle. If an
energy level u has a lifetime At, then uncertainty (spread) in energy AE must be
AE ~ h/At (h = h/27x), and the resulting spread in the frequency of emitted photons is

Av = AE/h.
(1) Line width due to the uncertainty principle: (2) Line width of the Lorentz function:
I b = y/47t2
‘-’-‘“ === u (upper level) YT W= ) + (yl4m)?
1 . .
hve Aur = 5 In terms of the line width Av, the
_l “ normalized Lorentz profile can be
--------------------- [ (lower level) rewritten as
b = 1 Av/2
A e B i A o 2 -+ (Av/2)
= decay probability per unit time, Einstein A coefficient.
Hence, the FWHM of the Lorentz
AE, = uncertainty in energy of u function: Av, = y/2x
At, = the uncertainty in time of occupation of u l
Ay, = spread in frequency Comparing (1) and (2), we find that
= AE, /h=1/2nAt) = A, /(2n) » |7 is equivalent to the the Einstein
A-coefficient., i.e.,y = A,




Classical Physical Meaning

Suppose that the electric field is of the form e 72
and then the energy decays proportional to e 7.

=

~

We then have an emitted spectrum determined by
the decaying sinusoid type of electric field.

Its Fourier transform (spectral profile) is a Lorentz
(or natural, or Cauchy) profile:

yl4m?

b= (v —vy)? + (y/4m)?
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Semiclassical (Weisskopf-Woolley) Picture of Quantum Levels

* In the semiclassical picture, each level is viewed as a continuous distribution of sublevels with
energies close to the energy of the level (E,).

The distribution of sublevels are explained by the Heisenberg Uncertainty Principle. The level has
a lifetime Atz = 1/A (A = Einstein A coefficient) and a spread in energy about AE =~ h/At = hA.

Y2
AEAt ~ h E2 >%
The ground level has no spread in energy
because At = 0. e
% = —
The atom 1is in a definite sublevel of some level.
E no spread

g

A transition in a spectral line is considered to be an instantaneous transition between a definite
sublevel of an initial level to a definite sublevel of a final level.

- The energy spread of sublevels is described by a Lorentzian profile with the damping parameter of
y = A.

- This picture implies that the emission line profile is the same as the absorption line profile.




» The intrinsic line widthisy =4,

- This means forbidden lines are intrinsically narrower than permitted lines.

- For instance, the permitted Ly line has A, /v, ~ 3 x 1077, while the forbidden

[OI11] 5007A is has a tiny width A,¢/vue ~ 3 x 10717

- The intrinsic line width of [O 11[] 5007A is equivalent to the Doppler broadening of

Av
Avp = Vyy——
C

AVD ~ Aug

— Av~3x10Ye~10nms ' ~30cmyr™

1

- For a multiple-level absorber, the upper and lower can both be broadened by

transitions to other levels.

Yul = Z Auj + Z Agj

E;<E, B <Ey

- ForLya (n =1-2), v, = A1 = 6.3 x 10871
Av/v = (v/21)/(c/\) ~ 4 x 107°
- ForHa (n =2-3), ~, = Aszs + Az + A1 = 8.9 x 10357}
Av/v ~3x 1077

Convolution of two Lorentzian functions are a Lorentz function with y = y; + 7.

Yut




[3] Collisional Broadening (or Pressure Broadening)

- The Lorentz profile applies even to certain types of collisional broadening mechanisms.

- If the atom suffers “elastic” collisions with other particles while it is emitting, the phase of the

emitted radiation can be altered suddenly. If the phase changes completely randomly at
the collision times, then information about the emitting frequencies is lost.

- If the collisions occur with frequency v, that is, each atom experiences v, collisions per
unit time on the average, then the profile is

/47>

= where I'=y+ 2v
P (v —yy)? + T'/4n)? F7 ol

ANV NA YA R
\/ (VARVARV.

:/\ /\ [ random phase interruptions

\/ \/ by atomic collisions

For derivation of the above formula, see Problem 10.7 of Radiative Processes in Astrophysics [Rybiki & Lightman], Chap. 11 of
Atomic Spectroscopy and Radiative Processes [Degl’innocenti], and Chap 8.3 in Theory of Stellar Atmospheres [Hubeny & Mihalas]

T -=

11 2
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- [4] Voigt profile : Thermal + Natural broadening

- Atoms shows both a Lorentz profile plus the Doppler effect. In this case, we can write
the profile as an average of the Lorentz profile over the various velocity states of the
atom. Let’s assume that the photon propagates along the z-axis.

Change of variables for the Maxwell distribution: vy, = ,/Q%T, y = ;_h
_ 1 2 - L 1 2
fo. = Y (2kT/m)1/2 exp (—muvZ /2kT) > [y = 7 exp(—y~)

To interact with an atom with velocity v, the photon central frequency should be vo + vo(v./c).
Then, the Lorentz profile at the frequency ' = v — [vy + vy (v./c)] = (v — 1) — vo(ven/c)y 1S SUPPOSed
to be multiplied with the Maxwell distribution.

dv Uth
Change of variables for the Lorentz function: %‘ = qﬁ% d_y = gbI; X <y0%>
— — I'/4
Let AI/DEVOUt—h,UEV L Voc,a: [Am
Avp Y0  Uth Avp

C
b() = /_ o 1, dy

o Uth I /4 1 ,
i /—OO (VO ¢ ) (v — 1) — vo(vm /e)y]” + (T /4m)? (Wl/z) xp (~v7) dy




11

o) = = H (w0

Here, a is a ratio of the intrinsic
broadening to the thermal broadening.

u IS a measure of how far you are from
the line center, in units of thermal
broadening parameter.

In terms of Doppler velocity, « can be
expressed as

V — 1 V —1Vy C
u = p—
Avp vy Uth

In the velocity term,

(% V — 1)
u = —, wWhere v =
Uth o

C

- The profile can be written using the Voigt function.

Voigt-Hjerting function:

2
a [T e Ydy
Hlwa) =2 /oo (u—y)? +a

T
‘= 47TAVD
. vV — 1)y
“= AVD
Avpy — vo [2kT
C m

Including the turbulent motion,

Vih b b
Avp =yg— — Avp =1g- = —
c c A
2T
_ 2 2 _ _ rms
where b = \/v5, + V7 4, Vth = ) Viurh = \@aturb

u =

v
b




Properties of Voigt Function

- For small a, the “core” of the line is dominated by the Gaussian (Doppler) profile,
whereas the “wings” are dominated by the Lorentz profile.

a [ e_dey
H(u,a) = —/ —
TJ) o (U—y)+a

I I 1 T
1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.30 7] — ; i 1 -
: 0=153 v=000 Gaussian core
0.25 - ——0=130 y=050 [ 0.1 L
6=100 y=1.00 2
: ——06=0.00 y=1.80 _
0.20—_ 0.01 &
i 5 -
0.15 1
1 0.001 -
: - . \\\\!_orent2|an wing ] -
0.10 = - '\.'. \"‘\\-_\_\\‘ X —2 n
: 0.0001 \ T U
: - ol|\ — B
0.05 - : ol T
i 107° & . '\\ T
0.00 i F R L 1
Y= 0 2 4 6 8 10

-10 U frequency

- Inmostcases,a < 1. ForLyaatT=104K, a ~ 0.005.
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« Line center:
2

H(0,a) = exp (a”) Erfc (a) ~ 1 — ﬁa +a* — O(a®)

- Taylor series expansion of the Voigt function :

oo —y2d
H(u,a)zg/ c Y

T ) (u—1y)% +a?

- Near the line center (u — 0), the contribution to the integral is dominated by y = u.
Therefore,

a < d
— O

which is known as the Doppler core.

- In the line wings away from the core (1 >> 1), the integral is dominated by y ~ 0
because of the rapidly decreasing function in the numerator.

H(u,a) ~ g/OO e dy _ayr__a

u? Tu?  Jmu?

— 00
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In summary, we obtain the Voigt function in a Taylor series expansion around

a=>0.

dH
H(u,a) ~ H(u,0) + a —

dCL a=0

2

~e v 4a

1
VT2

- The first term represents the Gaussian core, provided by the thermal broadening, and
the second term represents the Lorentzian damping wing.

Transition from Doppler core to damping wing can be found by solving:

eu2 — \/—7?u2 —~ | u’=1n (ﬁ) + Inu?
a

a

- The solution for this transcendental equation for Lyx is

1215.67 A

9265 x 10851
u2%10.31+1n[(6 LRl )(
Yul

)\uﬁ

) (o
10kms ™!

b=13kms ™! (T/l()éL K)1/2 for hydrogen J

)

Fixed point iteration

I 1 T

provided that the quantity in square brackets is not very large or very small. The
damping wing for |u| 2 3.2 or velocity shifts |y| > 3.2 (b/10kms™") .
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Atomic Processes related to Line emission

- Excitation and de-excitation (Transition)
» Radiative excitation (photoexcitation; photoabsorption)
» Radiative de-excitation (spontaneous emission and stimulated emission)
» Collisional excitation

» Collisional de-excitation

Emission Line
» Collisionally-excited emission lines

» Recombination lines (recombination following photoionization or collisional ionization)

lonization
» Photoionization and Auger-ionization

» Collisional lonization (Direct ionization and Excitation-autoionization)

Recombination
» Radiative recombination <=> Photoionization
» Dielectronic Recombination (not dielectric!)

» Three-body recombination <=> Direct collisional ionization

Charge exchange
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Radiative Excitation and De-excitation (Absorption and Emission)

 Three Radiative Transitions and Einstein Coefficients

- Absorption: absorption

» If an absorber (atom, ion, molecule, or dust grain) X is in g,
a lower level ¢ and there is radiation present with photons T

having an energy equal to £u¢ . The absorber can absorb

a photon and undergo an upward transition. I, h;\/v
absorption : X, + hv — X, (hv = Eyy) | '
Ny

» The rate per volume at which the absorbers absorb
photons will be proportional to both the energy density
uy of photons of the appropriate energy and the number
density ¢ of absorbers in the lower level Y.

dny _ (9 B
dt E—)u_ dt E—)u_ ey

» The proportionality constant Be. is the Einstein B
coefficient for the upward transition ¢ — w.
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- Emission: .
spontaneous emission

» An absorber X in an excited level u can decay to a lower level

¢ with emission of a photon. There are two ways this can g, L
happen:
spontaneous emission : X, — Xy+ hv (hv = Eyy) hv = Ey,
.. E :
stimulated emission : X, + hv — Xy + 2hv (hv = Eyy) ut Ew
» Spontaneous emission is a random process, independent of ny v
the presence of a radiation field. g¢
» Stimulated emission occurs if photons of the identical A
frequency, polarization, and direction of propagation are
already present, and the rate of stimulated emission is stimulated emission
proportional to the energy density Yv of these photons. Ny,
Eu
dng dnu T
(E) T < dt ) = N (Aue + Buguw) E hv
u—¥f u—¥ Euﬁ hv E /AVAVYa
NN A A
» The probability per unit time Aw¢ is the Einstein A coefficient 5 hy
for spontaneous transition. The coefficient Bu¢ is the 5
Einstein B coefficient for the downward transition u — . Ny v
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Relations between the Einstein coefficients

« The three Einstein coefficients are not mutually independent.
- In thermal equilibrium, the radiation field becomes the “blackbody” radiation

field and the two levels must be populated according to the Boltzmann
distribution.

41 8rhy3 1
(Uv)Tﬁzzz'z;lgvcjv — 3 ehv/ksT _ 1
(@> = g—“e_E“‘Z/kBT Here, F,» = hv.
ne ) g Y,

- The net rate of change of level u should be equal to zero, in TE.

dn, [ dng N dn,,
a  \ dt ), dt ). .,

— nnguu,, — Ny (Auf + Buﬁul/)
=0
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nﬁBﬁuul/ — Ny (Aué + Buﬁuu) =0

Ny Bue)
N Auyr
~ n¢Bpy — nuBu
_ (nuAue) / (neBeu)
1 — (nyBur) / (neBey)
(8./80) e~ hv/HT (Aue/Beu)
1 — (g,/g) e~ "/kT (Bye/Byu)

_ (8u/80) (Aue/Bu)
chv /KT _

(nﬁBﬁu — Uy = nuAuE

Uy

Ty,

Ty

<_

Comparing the above eq. with Planck function,

8why?
3

1

u, =
v ehv/kT _

1

we can immediately recognize that the
following relations should be satisfied.

8mThy?

(8/20) (Aue/ Bru) =

(8./8¢) (Bue/Bew) =1

Therefore, only one coefficient is independent.

(gu/gé) ( uﬁ/B£u> ......................

g

— _ue_hyuﬁ/kTexc

g

, the only:
: way to make the left eq. consistent with the Planck function :

:is to assume hv/kT > 1 (Wien’s regime). Therefore, the

: stimulated emission is negligible in the Wien’s regime. In  :

: other words, the stimulated emission term is required in the:

: Rayleigh-Jean regime. :

..)

In summary, we obtained the following
relations between the Einstein coefficients.

3
8rhu3 C
Bu — Au
Aur = 3 Bue £ 8T
3
By = g_uBuE By, = Su_ € Ay
/ ge 87ThV3
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We note the Einstein coefficients are intrinsic properties of the absorbing

material, irrelevant to the assumption of TE. Hence, the relations between the
Einstein coefficients should hold in any condition.

Using the relation, we can rewrite the downward and upward transition rates:
dn, g 3 dny c?
_— p— u Au v — 0 — uAu 1 v
(i) et (), = (1 )

It is helpful to use a dimensionless quantity, the photon occupation number:

9 averaging over directions 2 3
C T C C
oAl 7 = g

oy = N 8ﬂhy3uy

- Then, the above transition rates are simplified:

dn,, g dny
( dt >e—>u " g, (7 ( at >u—>e ufue {1+ ()

- The photon occupation number determines the relative importance of stimulated and
spontaneous emission: stimulated emission is important only when (n) > 1.
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Absorption and Emission Coefficients in terms of Einstein coefficients

- The Einstein coefficients are useful means of analyzing absorption and emission
processes. However, we often find it even more useful to use cross section
because the cross section has a natural geometric meaning.

(pure) Absorption cross section:

- The number density of photons per unit frequency interval is u./hv . Let ocu(v) be
the cross section for absorption of photons for the transition ¢ — u. Then, the
absorption rate is

dn, v
(%)M - W/ v (v)ers =~ now, o / Woeul¥)

- Here, we assumed that u,/hv do not vary appreciably over the profile of the cross

section. Therefore, we derive a simple relation between the absorption cross section
and the Einstein B coefficient:

hv, 2
/ Ao (V) = 2By, = 22 A,
C gy ST <

- |If the cross section has a normalized profile of ¢., we can write the absorption cross
section as follows:

hv,,y g, c?

Bﬁu le/ —

oou(V) =

A,  with /gbydu =1

gy STy ey,
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- (effective) Absorption Coefficient

-  We note that the stimulated emission is proportional to the energy density of ambient
radiation field. In the radiative transfer equation, it is convenient to include the
stimulated emission term in the absorption coefficient as a negative absorption.

dn ng stimulated
(W) ) (d_t> et T Bt
L—u u—£

= ngBry Uy — Ny, <&B€u) Uy

u

- Therefore, we may define the cross section for stimulated emission and the net
(effective) absorption coefficient as follows:

| » pure absorption coefficient

g Ry = NypOpy — NyOul

=Y

Ouwl — —Oyy n /ng
gu/g€

- Using the definition of the excitation temperature, we can rewrite them:

. P kB Texc o ‘ P kB Texc




Emission coefficient (Emissivity)

- The emissivity is defined as the power radiated per unit frequency per unit solid angle
per unit volume.

- The line emissivity can be expressed in terms of the spontaneous downward
transition rate:

dn spontaneous
47‘(’/de,/ — Ry <—£>
at u—¥

- Comparing with the definition of the Einstein A coefficient, we obtain:

Ay
/deV — nu_ehyuﬁ
A7

- If the emission line has a normalized profile of ¢., we can write the emissivity as
follows:

Al
jl/ — nu_ehyu£¢y Wlth /dy¢y = ]
4
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» The correction factor for the stimulated emission in absorption coefficient:

- For Lya line,
hiy, 1.1837 x 10° K
hv,e =10.2eV — 1 —exp <— kB;eic) =1—exp (— T:(C )
~ 1 for Toye = Tyas < 1 x 10°K

» The stimulated emission is negligible.

- For 21 cm line,

hv,, 0.068 K
hvye =6 ueV.~— — 1—exp<— Vﬁ)zl—@cp(— )

k5 Texc Texc
0.068K
- Texc

&1 for Texe ~ Tyas ~ 100K

» The correction for stimulated emission is very important. We, therefore, need to take into
account the stimulated emission in dealing with the 21 cm line.

- Two limiting cases:

- At radio and sub-mm frequencies, the upper levels are often appreciably populated,
and it is important to include both spontaneous and stimulated emission.

- When we consider propagation of optical, UV, or X-ray radiation in cold ISM, the
upper levels of atoms and ions usually have negligible populations, and stimulated
emission can be neglected.



25

Generalized Kirchhoff’'s Law

Source Function:

S, = 2~
8%,
(1/47) 0 Agehvag S
neag, (V)
Mh emiss
_ 2 Ny 4 Vu€¢1/ - @ _ g_u exp (_hVuE/kBTexc)
nede 8;}/% A5 [1 — exp (—hvye / kBT exc )] ne gy
QhVSE 1 .
— > . Qbimlss _ qbibs

C exXp (hyuﬁ/kBTexc) —1

- This is called the generalized Kirchhoff’s law.
- The intrinsic profiles for absorption and emission should are the same.

» The source function should approach the Planck function in LTE (7.,. = Tiinetic)-

For this to be true, the intrinsic profile of emission line should be the same as that
of absorption line.

» We can show that the intrinsic emission and absorption profiles are, indeed, the
same, using a semi-classical model for an atom.
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Oscillator Strength

 In the previous slides, we characterized the absorption cross section by the Einstein A coefficient.
Equivalently, we can express the cross section in terms of the oscillator strength for the absorption

transition £ — u , defined by the relation:

7T€2 7762
/Oéu(y)dV — fﬁu — O-Eu(V) — Cf€u¢y

MeC m

2
= 0.02654 cm? Hz is the cross-section, integrated over the line profile, for a classical

Here, the factor e

m,c

oscillator model.

- The oscillator strength is the factor which corrects the classical result. The quantum mechanical process
can be interpreted as being due to a (fractional) number f of equivalent classical electron oscillators of the

same frequency.
« The Einstein A coefficient is related to the absorption oscillator strength of the upward transition by

2
A, — 87‘(‘2@2y5£ g, o (0.8167(3111) g, [S_l]

— — Jlu
mecs g, A/ 2.

- For21.1cmline, g =3, go=1 (gr =2F +1)
Ay =288 x 1071 [s_l] = (11 Myr)_l fou = 5.75 X 1012

- For Lya (1215.67A) line, &, =3, g9¢ =1 (gL = 2L + 1)

: fru = 0.27760 for 28y 5 — 2Py :
= (0.13881 for 251/2 N 2p1/2

Aye = 6.265 x 10°® [s71]  fou, = 0.4164 for 12S) 5 — 2°P
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Maser Lines

- Population inversion

- Under some conditions, a process may act to “pump” an excited state u by either
collisional or radiative excitation of a higher level u’ that then decays to populate level u. If
this pumping process is rapid enough (relative to the processes that depopulate u), it may
be possible for the relative level populations between 1 and £ to satisfy the inequality (also
to have a negative excitation temperature).

/

u
rapid pumping ‘ :\: o
: U U

. nu > _nﬁ % TeXC uf < O.
slower decay 5 <y ’

- When this population inversion occurs, stimulated emission is stronger than pure
absorption, and the radiation is amplified as it propagates. Then, the effective
absorption coefficient, optical depth, and attenuation factor are

Ky, = Oy 1_nu/gu < 0, T,,:/H;,,ds<0, e >1
ne/gy

« Maser

- Such population inversion have been observed for microwave transitions of H |, OH, H20,
and SiO, and hence we speak of maser (microwave ampilification by stimulated
emission of radiation) emission.
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Observational properties

If kB Texc,uel > hv, the RT equation becomes T, = T4 (0)e™™ + Toxe (1 — e~ ™)
= (T'4(0) + |Texcl) el™| — | Texcl

The factor /™! is in some cases very large - some OH and H20 masers have been
observed to have T, > 10" K.

We note that

» el is more strongly peaked on the sky than |7, | - the angular size of the maser is less
than the actual transverse dimension of the masing region.

» el™! is more strongly in v than 7. - the maser line is narrower than the actual velocity
distribution of the masing species.

Some maser can be very bright, allowing the use of interferometry, as well as
observations of sources at large distances.

» This has enabled measurements of proper motion of maser spots in star-forming regions
of the Milky Way, as well as in material orbiting a supermassive black hole in the spiral
galaxy NGC 4258 (Hernstein et al. 1999).
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Collisional Excitation & De-excitation

- Collisional Rate (Two Level Atom)

» The cross section ¢, for collisional excitation from a lower level £ to an upper level u is,
in general, inversely proportional to the impact energy (or 1)2) above the energy threshold E ,
and is zero below.

» The collisional cross section can be expressed in the following form using a dimensionless
quantity called the collision strength €2, :

Ty
hR Qo 1
o (V) = (ﬂag) (1 H2> u em? for —mev? > Eyy I Su A '
5MeV ge 2 : :
W Qe ; c !
= cC ., = !
27,2 O S,
47Tme/U ge E’U,E E E 0-6’11, "g :O'fu,ﬁ
S S
h?  Qu, 1 o, S
or O'gu(E) = : (E — —mev2) ©.
8mmel gy 2
where, ag = 5 = 90.12 X 10'® cm, Bohr radius ¢
M€
Ru = "% _100.737 em—1, Rydb tant (B = -
H= 55 = : cm~ -, Rydberg constan = o

» The collision strength €2, is a function of electron velocity (or energy) but is often
approximately constant near the threshold. Here, g, and g, are the statistical weights of the

lower and upper levels, respectively.
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» Advantage of using the collision strength is that (1) it removes the primary energy
dependence for most atomic transitions and (2) they have the symmetry between the
upper and the lower states.

The principle of detailed balance states that in thermodynamic equilibrium each microscopic
process is balanced by its inverse.

NeNpVe0 oy (V) (V) dVp = NNy Uy 0ue(Vy) f (Vg )duy,
1 2 1 2
Here, ve and vu are related by 57V = 5ty + Eur  and /(v) is a Maxwell velocity distribution
of electrons. Using the Boltzmann equation of thermodynamic equilibrium,

nu gu Euf
- cX S —
Ty gy b kT

we derive the following relation between the cross-sections for excitation and de-excitation are

1 1
ggng'zu(Ug) — guUZO'ug(Uu) Here, 5777,6?]? — §mev3 + LBy —» 8- (E T EUE) ) UEU<E T Eu£> — 8y E - O-UE(E)

where FE = %mev2

u

and the symmetry of the collision strength between levels.

Qo = Qe more precisely Qg (E + Eyr) = Que (E)

These two relations were derived in the TE condition. However, the cross-sections are
independent on the assumptions, and thus the above relations should be always satisfied.
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» Collisional excitation and de-excitation rates

The collisional de-excitation rate per unit volume per unit time, which is thermally

averaged, is 00
kue = / voue(v) f(v)dv
0

d ©0 4 N\ 1/2
<ﬂ> = NNy / voue(v) f(v)dv _ ([ 2ol T—1/2M
At J s 0 km? 2
= NeNykye  [em™ 571 8.62942 x 1076 (Qy,0) s
— —i2 . [cm” 877,
kue = (ov),,
- effective collision strength:

(Que) = /0 b Que(E)e Bkl q(E /kpT)

and the collisional excitation rate per unit volume per unit time is

> 1
(%) = nungke, oy :/v | vop,(v)f(v)dv Here, §mevr2nin = Eu
b= ()1 ~(guz) T e (57

Here, k¢« and kue are the collisional rate coefficient for excitation and de-excitation
coefficients in units of cm3 s-1, respectively. We also note that the rate coefficients for
collisional excitation and de-excitation are related by

o Eué g Euﬁ
kpw = 2%k, _ __ Su _
¢ ge gexp( kBT) (ov) )., o, (ov)., .y exp( kBT>
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Sum rule for collision strengths

» Quantum mechanical sum rule for collision strengths for the case where one term consists
of a singlet (S=0 or L =0) and the second consists of a multiplet: the collision strength of
each fine structure level J is related to the total collision strength of the multiplet by

(2J" +1)
Qsry, siprgy = 25 + 1)(2L' 1 1)Q(SL, S/L')

Here, (2J' + 1) is the statistical weight of an individual level in the multiplet, and
(25" + 1)(2L' + 1) is the statistical weight of the multiplet term.

We can regard the collision strength of the term as “shared” amongst these levels in
proportion to the statistical weights of the individual levels (g; = 2J + 1).

» The flux ratio between the lines in a multiplet is proportional to the ratio of their
collision strengths, in a low density medium. Then, the flux ratio is determined by the
ratio of their statistical weights.

»  C-like ions (1s°25°2p — 1s°25*2p® ) forbidden or inter combination transitions.
ground states (triplet) -3Py :3P1:3P>=1:3:5
excited states (singlets) - 1D, 1S;

»  Li-like ions ( 1s°2s' — 1s°2p') resonance transitions
ground state (singlet) -2Si.

excited states (doublet) - 2Pz : 2Py =2 : 1
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Homework (due date: 04/14)

[Q5] Voigt profile

- We want to derive an approximate formula for the transition point from the Gaussian core to
the Lorentz wing, which 1s defined by

u? =In (vV7/a) + Inu? or z=In(v7/a)+Inz, where z = u’
The above equation can be expressed in the form:

x = g(x) where g(z) = Inz + In (v/7/a)

This equation can be solved using “Fixed Point Iteration Method.” Starting from any 1nitial
point x¢ , the following recursive process gives an approximate solution of the equation.

Ln+1 = g(:l?n)

(2) Calculate a = I'/(4nvp) for Lya and b = 10 kms™!, which is appropriate for Ly« in the

warm neutral medium (WNM) with T~ 10000 K. Note that "' =y, = 6.265 x 10°s™! and
A, = 1215.67A.



(2) Plot two graphs, f(x) = x and g(x) = In(x) + In <\/7_Z'/ a).
(3) By looking at the two graphs, choose an approximate solution of x = g(x). In other words,

choose an approximate value where y = x and y = g(x) intersect.

Let this approximate solution be x;, and then find the numerical solution of x = g(x) using
the fixed point iteration method, as follows:

r1 = g(zo =4

y = g(x)
Ty = g(T1
L3 = (55'2

Denote the solution as x..

Ty = Tpn aAS N — OO

What 1s the value of x. that you have found? T T1 Ty
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(4) Let’s denote the width parameter a for Lya and b = 10kms™! as a.. This means that
T, = Inz, +In (ﬁ/a*)

Now, for any parameter a which 1s slightly different from a., you may express the constant
term in g(x) as follows:

In (v/7/a) =In(as/a) +In (V7 /a,)

To find the solution for a # a. (but, still close to a., i.e., a & a.), choose an 1nitial guess for
this case as x5 = X..

Show that the solution for any a can be expressed, after a single iteration, as follow:

r1 = x4 + In(as/a)

Insert numerical values into the above equation, and confirm that your solution 1s equivalent
with or the same as the results in this lecture note and Eq. (6.42) in Draine’s book.

(5) Compare your solution with Eq. (2.39) in Ryden’s book (our textbook). Does the equation in
Ryden’s book 1s equivalent with that of yours?



