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Intermediate States - expansion phase

» Assumptions:
- The shocked gas layer is thin.

- The ionization front follows the shock front and the expansion velocity of ionized
sphere is approximately the same as the shock velocity.

dR

‘/i—front ~ V;,hock E — ‘/s

- Expansion:

- The pressure behind a strong “isothermal” shock (high Mach number) is related to the
shock velocity:
Py = poV? = ngmuV;

- Now assume that the pressure behind the shock wave is equal to the pressure of the
lonized gas (pressure equilibrium).

2kT
P, =2nkT = nich? (012 —) for fully-ionized hydrogen gas
H

- Then, the shock velocity is given by

2
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- We assume that the amount of fresh neutral gas to be ionized is very small. Then, the
ionization balance for the region within R gives

Qo = 4—7TR3n-2aB — R’ = 3Qo — R3 (n0)2 Rs = Stromgren radius

~ 4mnfop ny for the initial stage.

. . | . . L .
- Combining with R the equation for the expansion of the ionization front is
i 0
Cj 4 dR
3 3 1 — =
R — Rs (i) dt Vs
dp\* d
p=R/Rs, T=ct/Ry ——> p? (_’0) —1 p3/4_p —1
dr dr

- For a suitable boundary condition, we assume that the initial Stromgren sphere is set
up at 7, (a very small fraction of the lifetime of the H Il region):

R=R, at 7T=1g
Then, the solution of the differential equation is

7

4)7
p:[l—FZ(T—Tg)] R:RS<1—|—

Zt—to 4/7
4R8/Ci



- Expanding velocity is

@—c- 1_|_Zt—t0 o
dt 4 Ry /c;

- What is the time scale to reach the pressure equilibrium?

R(teq) = Rf ~ 34R5

7 e 4/7
S 1 n - %45
R(14 555 ) ~un

teq ~ 273 (RS/Ci)

- The expanding velocity at this point is:

d
‘/5 == d—]‘f = 0.71 Ci at teq — 273R8/Ci




Timescales for typical HIl region

« Let’'s examine the case of an O7V star with

- Expansion phase: expansion timescale t¢., = R,/c

Qo =105, ng=102cm™>, T =10*K

Initial state: recombination time scale

R~ R, at t = tec

R, ~ 3pc (=~ 10" cm

trec =~ 1000 yr

)

lrec = (nOOCB)_1

expansion velocity : Vg < 0.65¢; at ¢ > texp

¢ ~ 10kms™?

toxp R 3 X 10°yT = toxp & 200 trec

t S tree
1/3
R(t) = Ry (1 - 7/t
dR R, et/ trec

At 3o (1 — e t/trec)2/3

trec,g t
7t—t0
4R /¢

Tt—to\ /7
(1
dt C( +4Rs/c1>

Final state: equilibrium timescale t.q ~ 273R;/c; (from expansion phase model)

R = Rf at t = teq

Rf/RS ~ 34

teq 2 10°yT = toq ~ 300 texp




Does the Stromgren sphere reach pressure equilibrium?

- Main-sequence lifetime of an ionizing star

Mo\ 2
tMs ~ 10t (M—> yT tvs ~ 107 yr for M ~ 15Mg
©

« Size

- During the lifetime of an O star, which is less than 10 Myr, interstellar gas moving at
10 km/s will travel less than 100 pc, which is comparable with the diameter of the
larger H |l regions.

- Thus, before an H Il region has expanded very far, its central energy source will be
extinguished.

 Time Scale:

- Main-sequence lifetime of an ionizing star is 10 times smaller than the time scale for
the pressure equilibrium:

Ivs ~ 107 VI K teq 103 yT

- It is unlikely that the final state (pressure equilibrium) of H Il region can be
reached during lifetime of star.



Gas Dynamics

- Gas Dynamics / Shock




Introduction to Gas Dynamics

« Assumption for hydrodynamics:

- particle mean free path << size of the region
-  We will describe the equations for conservation of mass, momentum and energy, in 1D space.
- Definition

gALAA
- Flux of a hydrodynamic quantity g (for instance, density): /

(

Fluid moves a distance AL during a time interval At with a velocity v. FAtAA

FAtAA = gQALAA — F=qu

AL — uAL

- Conservation equation for a quantity 1
- change of the quantity within a volume AV for a time interval At: AV
Here, At and Az are independent. (/:
qAV |, as — dAV] R | ] et

s A’ft L= FAA|, — FAA|, A,
0q OF Jq d(qu)
_ = — > _— = — L x4+ Ax
ot Ox ot Ox

- Here, no sources or sinks of the quantity within AV were assumed. If any, the loss and gain
terms should be added in the right-had side.



Mass Conservation

- Conservation equations
- Mass conservation (continuity equation)
» mass within a volume dV = pdV
» No sources or sinks of material within dV/

» Consider the mass per unit area (dA), contained in the volume

incomin outgoing
0 - - N
pdV)dA = pde — 5; (pdx) = "pu” —(p+dp)(u+du)
= —(pdu + udp + dpdt)
9p _ 9(pu)
ot Ox

» Mass loss and gain terms should be added in the right-had side, if necessary.



Momentum Conservation

Momentum conservation (Euler’s equation)
» momentum within dV' (per unit area) = (pdV)u/dA = pdzu

= change of momentum due to fluid flow and gas pressure acting on the surface of dV/

mcoming outgemg incoming outgoing

9 ~5 - S ——
a(pudaz) = pu° —(p+dp)(u+du)*+ P —P+dP
= pu? — (pu2 + 2pudu +pdu/T+ w?dp +W) — dP
0 ou dp OP 0 ou dp OP
— — pu— —uP L — — — 2ou— — Ul — —
o P = A T e T o) = A T e T Ba
Ou Do Ou_ [ Ou  Op) 0P 0 0P
Por "ot — "ox T "\Por "0z ) T 0a oz " T D
or
. , ou  O(pu)
Using mass conservation, T
ou ou OP 0 s, .
B It el _ P
YT T 5¢ () = — 5 (" + P)

» Further terms could be added in the right-hand side, accounting for forces due to gravity,
magnetic fields, radiation field, and viscosity.



» The following quantity is sometimes known as Bernoulli’s constant.

pu® + P

One may use it to understand why, for example, fast winds engulfing a house causes it to
explode, rather than implode, because the pressure external to the house becomes lower
than its value inside it.

» Viscous force is due to “internal friction” in the fluid (resistivity of the fluid to the flow), as

two adjacent fluid parcels move relative to each other.)

. O?u
viscous force o« ——

Ox?

The viscous force is usually much smaller than force due to gas pressure, but important in
high-speed flows with large velocity gradients, as in accretion disks.



Gas Dynamics - Energy Conservation

- Energy conservation

» The first law of thermodynamics states that

heat added in a system = change in internal energy + work done on surroundings

dQ = dU + PdV

» Internal energy (per particle) for ideal gas is

3
U/N = §kT for monatomic gas (translation about 3 axes)

5
U/N = §l~cT for diatomic gas  (+rotation about 2 axes)

U/N = 3kT for polyatomic gas (+rotation about 3 axes)

Here, N is the number of
particles.

An ideal gas is a theoretical gas composed of many randomly moving point particles
whose only interactions are perfectly elastic collisions (no viscosity or heat conduction).

» In general, the internal energy per particle is

N ==
U/ 7

f At high temperature, molecules have access to
KT (f = degree of freedom)  an increasing number of vibrational degrees of

freedom, as they start to bend and stretch.



- The ideal gas law (the equation of state) for a perfect Maxwellian distribution.

N
PV = NEKT P:VkT

- Specific heat capacity is the amount of heat energy required to raise the
temperature of a material per unit of mass.

» specific heat capacity at constant volume:
M = total mass

1 /0Q 1 [o0U fk :
cv = o <8T>V Y <8T)V v =5 m / mass per particle
m = umg
- : (4 = mean atomic weight per particle)
» specific heat capacity at constant pressure:
1 /0 1 [oU P [0V 1 P Nk
Cp = Q — + — —iNk‘ e
M\or), M\OT), M\OT), M?2 M P |
f+2k k
Cp = 5 =Cy + —
» Ratio of specific heat capacities: m m
v=CP f+2 5 A —— 7Y is called the adiabatic index.
v / . cp > ¢
. P 1%
=z for diatomic gas This inequality implies that when pressure
4 is held constant, some of the added heat
— — for polyatomic gas goes into PdV work instead of into internal
3 energy.



Energy Conservation - limiting cases

» Adiabatic flow - negligible heat transport (Internal energy is changed only by work).

dQ = dU + PdV = McydT + PdV
dQ =0
— PdV = —MecydT

PV = NEKT

— VdP + PdV = NkdT

We combine two equation and eliminate d1' term:

NE

cy

VdP + PdV = — PdV

R gy

m Cy

We can rewrite this in terms of density:

pV =M

— pdV +Vdp=0 R dPZV@
dp  dV P

- = -
P V

k1
VdP = — (1 + ——) PdV
m Cy
1 k
= —— (CV + —) PdV
Cy m
= —vPdV
dP dVv
=y
P V
In summary,
P av = Pocp’
P 'V  PxV™
d—P = f}/@ — T V_(’y_l)
P p

adiabatic heating/cooling



» Isothermal flow - extremely efficient cooling (heat transport).

heat transport timescale << dynamic timescale

This implies the balance between heating and cooling, hence a constant temperature.

From the ideal gas law,

N T P
b N T P
4 m Pox V!

» In general, we have

-
P P (’y — 1 for isothermal gas)
PxV™?

A gas that has an equation of state with this power-law form is called a polytope,
from the Greek polytropos, meaning “turning many ways” or “versatile.”

(A polystrope should not be confused with a polytrope, which is the n-dimensional
generalization of a 2D polygon and 3D polyhedron.)



- Specific internal enerqgy of the gas (per unit mass).

e=U/M FET 1 kT 1 P
¥ —— €=>=— Oor €= = ———
U/N:§kT 2 m y—1m y—=1p

- Total Energy (per unit volume):
1

» Internal energy per unit volume: Eint = pe = ﬁp
2
» Kinetic energy due to bulk motion, per unit volume: &, — p%
» Work on unit volume: _ PdV
gmech =-—— = F
av
E = gint + gkin + gmech
2 > £ = v’ + P
:p(%wf)+P I R
- Energy conservation:
o€ 0(uf) o ( u? Y 0 u? v
ot 9z m(p2+7—1 oz |“\P2 T 51




Sound Wave

« Suppose that we are surrounded by an ideal gas with a plane parallel symmetry:

- We consider a region where the gas has initially a uniform density, pressure, and no
bulk velocity: py, Py, ug =0

In the uniform gas, we introduce small perturbations of the form:

p(z,t) = po + p1(z,t) P,=P— P,
u(z,t) = ui(z,1) x (po + p1)" — pd b
P(ZC,t):P()—I—Pl(ZU,t) _— O(fypg_lpl EE— P].:%pl
We obtain: |
dp  O(pu) Opr _ _ Ow l
du  du OP Owy 0P ARop _ P, AR Op
pa —pua—x O PO Ot ox po Oz Ot2 po Ox?

- The resulting equation represents a sound wave (acoustic wave) with a constant
sound speed:

(P 1/2 (kT t/2 o o p1=1/2 For y > 1 sound travels more
T\, ~—\ " s %P rapidly in a denser gas.




The sound speed is of the same order as the mean thermal velocity:

1/2 —1/2 1/2
cs =12kms™? T n —T
5/3 my, 100K

(m, = proton mass)

Sound crossing time:

» sound crossing time = time it takes for a signal to cross a region of size L:

leross = L/CS

» A small pressure gradient tends to be smoothed out within the sound crossing time.
Generally, when a stationary gas is disturbed, the resultant changes in velocity, density,
pressure, and temperature are communicated downstream at the sound speed.

Fast changes occurring on timescales < I..,., Will survive, and a shock front forms.

Slow changes occurring on timescales > 1., Will be damped.

Mach number = gas velocity / sound speed

M > 1 supersonic

M = u/c M < 1 subsonic




Shock

Shock

- A low-amplitude sound wave traveling through N
a medium will be adiabatic; that is it will not Time 1
increase the entropy of the gas through which

it passes.

—>

For an adiabatic process, the equation of
state for the gas is \/L/\Time )

¢, o p1/2

Thus, for y > 1, sound travels more rapidly in
a denser gas.

For a supersonic gas, the motion itself is faster than the speed of communication,
and instead of a smooth transition, the physical quantities (density, pressure, and
temperature) undergo a sudden change in values over a small distance. This
phenomenon is referred to as a shock.

We define the shock front as the region over which the velocity, density, and pressure of
the gas undergo sudden changes. The shock front is a layer whose thickness is
comparable to the mean free path between particle collisions.

The ordinary sound that we hear every day will not, in practice, steepen into shocks.
However, high amplitude pressure fluctuations will rapidly steepen into shocks.
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Shock Front

Jump condition (Rankine-Hugoniot conditions)

et

p = mass density, T' = temperature,

m = mean molecular mass

If a patch is small compared to the shock front’s
radius of curvature, then we can treat the shock
front as if it has plane parallel symmetry.

It is convenient to use a frame of reference in
which the shock front is stationary.

Let us consider a shock propagating with velocity
Vs into a gas that is previously at rest. In the frame
of reference of the shock, the gas in the pre-shock
region is approaching at a velocity of —Vs.

In this frame, the bulk velocity ©1 = —Vs of the pre-
shock (upstream) gas toward the shock front. The
bulk velocity u2 of the post-shock (downstream)
gas points away from the shock front.

Shock Front
Py, Py, Ty Py Py, Ty
— —>
ul u2
“upstream” “downstream”
pre-shock post-shock

Plane parallel steady-state shock,
in the reference frame of the shock

front.
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 Let’s consider a steady state solution.

- The gas properties immediately before being shocked (“1”) and immediately after
being shocked (“2”) are obtained from the conservation laws:

pP1uUl = p2u2
prui + Py = pous + P

2 2
Uy Y Uy Y
4+ P | = — + P
ul(p12 v —1 1) uz(p22 v —1 2)

Dividing the third equation with the first equation:

uj v P ouj v P

Ly — 24
2 ~v—=1pp 2 vy—1p

In summary, P1U] = P2U

Here, we assume that an adiabatic index is the same on both sides of the shock front.
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- From the three equations, we should be able to derive the changes, p2/p1, ua/us,
and P,/P, across the shock.

It is convenient to use a dimensionless number, the Mach number of the upstream:

VP uip1
My =uy/eq, i = > P =
/ ! P1 VM%

(1) To find the equation for densities:

prui + P = pauj + P

1U1 = P2U2 1= uy +ul——s5 =
YMi o Ly M2 02 ’
1 P1
— Py = pu? (1 + — —)
' YMT  po

Inserting these relations into the energy conservation equation:

5 az’ +br —c=0

where r="
u%_i_ Y P1:u§+ v Py 02
2 7_1,01 2 7_1/02 a:l——’y
u? 1wl 1 (prug 2 v oprud 1 01 2 -1
— + 5= 5 T 1+ 7~ Y 1
2 y—1M? 2\ po v—1 pa YMT  p2 b= + -
1 1 1 1 2 y—1 (v—1DM;
_ p1 7P 1 p1
2 y—1M3F 2\ p v —1p2 TMi o p2 S R v Ny V'
1
B b% + V/b? + dac

X

2a
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. Y 1 M32-1
P e
T 2
P2 — 7—_71 >
_ME+TFME-T)
(v + M3

(2) Now, we obtain the equation for pressures:

Divide the following equation

1 P1
Py, = p1u’® (1 + — —)
2o YMT po

with this >

(3) Using the ideal gas law:

Ty p1 P
é _ -

_ pET —
- T p2 P

m

P

Using the equations for densities and pressures:

L, _ [ =DMI+2] 2yMF— (v - 1)]

ﬁ_

(3 + 1M
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In summary, we obtain the jump conditions:

p2 _  (y+DMT  w
pr (y—LMF+2  uy
Py _ 2yM7 — (v — 1)

P1 Y + 1
T, _ [y = DMi+2] [29MT — (v — 1)]
17 (v +1)2M?

In the lab frame, let V., = shock velocity, v1, v2 = gas velocities in upstream
(pre-shock) and downstream (post-shock), respectively (vi =0) .

Using v; = -V, and uy = vy, — V, , We have

Vi (v +DM7

vg—Vs  (y—=1)M7 +2

Downstream velocity in the lab frame:

_2Mi-1)

Vo —

V. Note a typo in Equation (16.12) of Kwok’s book.
(v + 1) M2 "7



p2 (Y +DM? Uy

n - DME+2  us monatoTic
Py 29M3 —(y—1) gas. v=5/3
Iz v+1
T, (v = DMI+2] [29M] — (y - 1)] 11
T (v + 1)°A8 2~ 2~y
p1 y—1 P1
For a strong shock: M > 1 uy y—1 uy 1
Py ~ 27M%P Pi=ci S 2y(ui/er)” 2Pt Py ~ = pru; Py §ﬂ1u2
S T Ty +1 by v+ 1 47
2(y — 1) m 3 m
20 =)y o 20y — 1)y (u1>2 T ~ 02 Ty~ — — 2
e M Ty ) ENCES VRN R R
speed of the downstream in the vy 2 V. Ve~ §V
laboratory frame: (vy+1) ° 2Ty
P2 _ M?2 = 41
For an isothermal shock: 7 =1 01 U9 sy = C%
2p _ 2
Py = MiP1 = piuj o= &
I> =17
speed of the downstream in the _ (11— 1
laboratory frame: = ( M? Vs




26

- Consider a strong shock
- No matter how strong the shock is, the gas can only be compressed by a factor of at

most 4.
Note that the mean molecular mass (mass per particle) is
P2 for v = 5/3 (mass per particle)
1.4

1 3 (monatomic gas) m = 1TH = 1.273my for neutral gas
Py ~ = piu? 1.4

2T 4,01 1 m = QW;H = 0.609my for ionized gas
T 3 m o, | for ionized gas,

2~ 16 k U7 n ~ 2.3ng one electron from an ionized hydrogen

two electrons from a doubly-ionized helium.

- Inthe lab frame, Vs =shock velocity, vi, v2 = gas velocities in upstream and downstream,
respectively.

uy =v; — Vg ==V, (v1 =0)
Us = v — Vi
- Then, the post-shock velocity is

U9 ve — Vi 1 3
w -V, 4 277

- Hence, the post-shock moves in the same direction as the shock front with a velocity
of 3/4 of the shock velocity.
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- Then, the post-shock pressure, temperature, specific internal energy, and specific kinetic energy are,

respectively,
Post-shock temperature
3 T T T T
P, = Zplvg for v =5/3
3m
Ty =—V;
° 7 16k °
(c/’th B B §& B §(3/4>p1‘/;2 gint,Q _ g‘/'SQ
o 0 2p 2 4p P2 32
Ekin,2 — %Ug gkin’Q — g‘/SQ ) 0 5loo 1600 15;00 2c;oo 25;00 3000
P2 P2 32 shock velocity Vi [kms™!]

- A strong shock can produce very high pressures and temperatures. An interstellar shock front with
propagation speed Vs~ 1000 km s-1 (typical for a supernova shock wave) produces shock heated

gas with

2 2
-~ . m Vs _ 5 m Vs
fo~ 138 x 107K (O.6O9mH> (1000 km s—1> or 1z ~ 1.38 x 107K (0.609mH) (100kms—1>

assuming the shocks gas is fully ionized hydrogen.

In general, shock fronts convert supersonic gas into subsonic gas in the shock’s frame of reference.
Shocks increase density, pressure, and temperature, and decrease bulk velocity relative to the shock

front. Shocks act as entropy generators.
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Hot lonized Medium

- Hot Gas Cooling
- Supernova Remnant
- Local Hot Bubble
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General Properties of the HIM

Hot lonized Medium, coronal gas

About half the volume of the ISM in our Galaxy is occupied by the HIM.
Temperature ~ 106 K.
Typical ion number density n ~ 0.004 cm-3

It provides only ~ 0.2% of the mass of the ISM, despite being the largest contributor
to its volume.

The HIM is hot because it has been heated by shock fronts that result from
supernova explosions.

We live in the “Local Bubble”, which is ~ 100 pc in size. The Local Bubble is
thought to have been blown by a supernova that went off ~ 10 Myr ago.
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Collisional lonization Equilibrium

CIE

- CIE assumes that the plasma is in a steady state, and that collisional ionization,
charge exchange, radiative recombination, and dielectronic recombination are the
only processes altering the ionization balance.

» Note that the reverse process to collisional ionization is a three-body
recombination, which is unlikely to occur.

- The ionization fractions for each element depend only on the gas temperature, with
no dependence on the gas density.

lonization fraction

- For hydrogen, the balance equation is : ionization rate = recombination rate
nen(H ke g = nen(H)aa 1 n(H°) +n(H') = n(H)

- The rate coefficients for collisional ionization and radiative recombination are:
ki = 5.849 x 1079 T}/2~15:782/T4 [c3 g~ 1]

ap g = 4.13 x 1078 03700 InTa 1oy 3 =11 for 30K < T < 3 x 107K
=5x 1071771 for T > 10°K [from Draine]

aam = 1.269 x 10713 [em® s7!]

(1+ (2/0.522)047)19%3 where = 2 x 157807K/T [Hui & Gendin 1997, MNRAS]
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The ionization fraction is

n(HT) 1.0
xr =
n(HY) + n(HT)
k.. 0.8¢
_ ci,H .
keig + A H 2 06
3
z
» The ion fractions are — 041
0.2
r~~0.002 at T =10*K |
~ -7 _ 6 L
l—z~3x107" at T'=10"K 0.005 1.0 15 2.0 2.5 3.0

H Il regions with T = 104 K are photoionized by UV photons from hot stars.

Hydrogen gas with T = 108 K is almost entirely collisionally ionized.

For Helium, the balance equations are:

n(HeT)a1g = n(He”) ko,
n(He+)k12 = n(He2+)Oz21

n(He) = n(He®) + n(He") + n(He? 1) Here, ij indicates X'* — X7,
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- The rate coefficients are
kop = 2.39 x 101! 71/2,—285,335/T from Cen (1992, ApJdS)

kio = 5.68 x 107 1271/2¢—631,515/T
a1o = 1.50 x 10710 7—0-6353 radiative recombination

—3m—1.5 —470,000/T —94,000/T dielectronic recombination
+ 1.9 1077 ¢ (1+0.3e ) (but not significant)

(g1 = 3.36 x 10710 T=1/275°02 /(1 4 TOT)

- Using the above rate coefficients, the ionization fractions can be estimated as follows:

He? He* HeZt

. n(Het) 1
o n(He) 1+ 0410//601 —+ klg/()égl
y = MHET) | ki

n(He) - ozglm

Ion Fraction

o 4 6 8 10 12 14 16 18
T10'K]



- Heavy Elements

» The calculation is usually done numerically, for instance, using CHIANTI
CHIANTI: https://www.chiantidatabase.org/

» For instance, the ion fractions of Carbon and Oxygen as a function of temperature are:

1.0 v : 1.0
111 T i

= 0.8t i = 0.8t \ 111
) S0
,g >
S 8
= 0.6} I = 0.6}
5 B
& i & i
= 04 = 0.4
o V] -
2 2

0.2 J k 0.2

0001 105 10° 107 007701 108

T [K]

® AtT~ 10°K, we expect a mix of C V, C VI, and C VII.

@ AtT ~ 4x10°K and higher, almost all the carbon will

be in the form of fully ionized C VII. The figures were calculated using CHIANTI.


https://www.chiantidatabase.org/

34

Cooling in CIE

- Cooling function

- Attemperature T > 10* K, ionization of hydrogen provides enough free electrons so
that collisional excitation of atoms or ions is dominated by electron collisions.

- At low densities, every collisional excitation is followed by a radiative decay, and the
rate of removal of thermal energy per unit volume can be written:

A = neancool(T)

The radiative cooling function f..i(T) = A/nun. is a function of temperature and
of the elemental abundances relative to hydrogen.

- At high densities, radiative cooling can be suppressed by collisional deexcitation, and
the cooling function will then depend on density, in addition to 7" and elemental
abundances.

- Ifionizing radiation is present, the ionization balance may depart from CIE, and the
radiative cooling function will also depend on the spectrum and intensity of the
lonizing radiation.
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Fig 34.1
Draine

Fig 34.2
Draine

10—23

[ CIE Radiative Cooling, Z2=7,
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<
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0

2=7/7

T TTTTTL

104

10%

108

107

T(K)

108

10°

Radiative Cooling Function for solar-abundance

- At T < 107K, the cooling is dominated by
collisional excitation of bound electrons.

At high temperatures, the ions are fully
stripped of electrons, and bremsstrahlung
(free-free) cooling dominates.

A/nenyg ~ 1.1 X 1022 T6_O‘7 lerg cm” S_l]

(10° < T < 10" K)

A/nenyg ~ 2.3 x 10724 T3 [ergem?® s ™1

(T > 10" K)

Cooling Function for different abundances

- In most applications, the abundances of
elements beyond He can be assumed to be
scale up and down together.

The cooling functions were calculated using
CHIANTI.
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Fig 34.3
Draine

Fig 34.4
Draine
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Radiative Cooling Function, with contributions
from selected elements. In this calculation, the
solar abundance is assumed.

- At 10*K < T < 3 x 10*K, cooling occurs
mainly by Lya emission from collisionally
excited H atoms.

- At3x10°K < T<2x10"K cooling occurs

mainly by permitted UV lines from collisionally
excited heavy ions.

- For 10°8K < T < 107K, the cooling is
dominated by Mg, Si, and Fe - elements that
in cold gas are normally depleted by factors
of 5 or more.

Cooling time
(using the formula given in next slides)

teool = 1.1 x 10° T (ngg/em™2) "1 [y1]
(10° < T <103 K)

for isochoric cooling (constant density)



Cooling Time Scale [isobaric / isochoric]

Cooling Time scale for two important cases:

The first law of thermodynamics states that:

Heat added in a system: dQ) = dU + PdV

Using a heating and cooling rate per volume I" and A , the change in heat is

dQ = (T — A)Vdt

The change in the internal energy is

dU = (T — A)Vdt — PdV

When there is no external heating (I' = 0), the equation for an ideal gas with a
degree of freedom f becomes:

U = iNkT f
2 5> | d (—NkT) — _AVdt — PdV
PV = NkT 2
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Consider the case of constant pressure or constant volume:

PdV =d(PV)—VdP =d(NkT) for isobaric cooling (constant pressure)

PdV =0 for isochoric cooling (constant density or volume)
Therefore,
d (f+2 : : :
— > NkT | = —AV  for isobaric cooling (constant pressure)
d (f i : : .
- 15 NEkT )| = —AV  for isochoric cooling (constant density or volume)

The cooling time scale are then:

teool = L = lcool = Jr2nkT for isobaric cooling

0N |dT dt| o0 2 A

n=N/V _ SRl for isochoric cooling
N 2 A

Here, the number density includes all particles (molecules, atoms,
lons, electrons)



Time Scales in the HIM

- Cooling time scale:
- In the HIM with temperatures T ~ 10° — 10’ K, the cooling time scale is:

For fully ionized gas,
L 5nkT ne = 1.2nH | one electron from an ionized hydrogen
cool = 5 7 p n~ 2.3ny | two electrons from a doubly-ionized helium.
- The cooling time at T ~ 10°K is 523 kT 1

leool = 3
"7 21.2 A/ (nenn) ny

Ny —1
foool A 48 [Myr] T5 " (0 004 Cm—3)

Ny —1
~ 0.19 [Myr] T2 (1 cm—3>

«—— A/neng ~ 1.1 x 10722 T, %7 [ergem?® ™1

The HIM frequently doesn’t have time to cool thoroughly
before another supernova shock wave comes through to
heat it again.

- At T ~ 107K, the cooling time is

1/2 nyg —1
Leoot % 7:2[Gy] Ty (0 004 cm—3)

1/2 ny -1
~ 29 [Myr] T2/ (1cm_3>

«— A/nenp ~ 2.3 x 107 Tg"° [erg cm® s

Given the low density of the HIM, the cooling time of gas is comparable to the age of
our galaxy (~13 Gyr, only after 0.8 Gyr after the Big Bang; Xiang & Rix, 2020, Nature,
603, 599).



https://www.nature.com/articles/s41586-022-04496-5?utm_medium=affiliate&utm_source=commission_junction&utm_campaign=CONR_PF018_ECOM_GL_PHSS_ALWYS_DEEPLINK&utm_content=textlink&utm_term=PID100062364&CJEVENT=6c6d3b3ced3411ed801600f50a18b8fb
https://www.nature.com/articles/s41586-022-04496-5?utm_medium=affiliate&utm_source=commission_junction&utm_campaign=CONR_PF018_ECOM_GL_PHSS_ALWYS_DEEPLINK&utm_content=textlink&utm_term=PID100062364&CJEVENT=6c6d3b3ced3411ed801600f50a18b8fb
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« Recombination and lonization Time scale:
- If collisional ionization could somehow be turned off, the recombination time scale is
1

ny —1 _ _
trec — NeCUA H ~ 0.6 [Gyf] <0004 Cm_?’) [T ~ 106 K] A H ~ 1.5 x 10 14 [Cm3 S 1]

- If collisional ionization could suddenly switch on, the collisional ionization time scale is

—1
~ 160 [yr] (0 OOme_?)) T ~ 10° K] keim ~ 5.0 x 107° [em® s

- These times scales indicates that

» If cold neutral hydrogen gas is shock-heated to ~ 108 K in a time Theat < tci , it will take a
time t ~ t.; for hydrogen to become ionized. During this time interval, the hydrogen
will be out of collisional ionization equilibrium (under-ionized than in CIE).

» If highly ionized gas at ~ 106 K is cooled on a timescale t..01 < trec, and the heating
source is turned off, it will take a time ¢ ~ ... for the hydrogen to recombine. During the
intervening time, the gas will be out of CIE (over-ionized than in CIE). This is
sometimes called “delayed recombination”.



4]

If a gradually cooling gas of the HIM to be remained in CIE, we require

Assuming the recombination rate coefficient at high temperatures

aap ~5x 1078 emPs ! (T/107K)

» AtT~ 108K,
1 6 1.5 _3\—1
trec = ~ 0.5 [Gyr] (T/10°K) " (ng/0.004cm™)
NeA H trec
g
teool 2 48 [Myr] T617 (TLH/OOO4 Cm_?’)_l cool
» AtT~107K,
1 7 1.5 _3y—1
brec = ~ 16 [Gyr] (T/107K) ™ (ng/0.004 cn~?)
NeXA H t
, :> z':I‘eC
teool & 7.2 [Gyr] T7° (ng/0.004cm™?) cool

trec < tcool

(T~ 10°K) < t. (T = 10’ K), t,.,(T ~ 10°K) < t.,,(T ~ 10’ K)

Z’I'GC tI'CC

CIE.

Therefore, in the extremely hot regions, the hotter the gas is, the further away it is from




42

Cooling in Shocked Gas

- The hot shocked gas is out of equilibrium, and will
start to cool. Thus, the shock will be followed by a
radiative zone in which the shock heated gas cools
down by radiating away photons.

- At high temperatures T > 2 x 10" K

» The cooling is dominated by bremsstrahlung (free-free
radiation), for which the specific cooling rate (per mass)

'S ()" ()

assuming a gas of fully ionized hydrogen. The specific
internal energy of ionized hydrogen (per mass) is

T
107K

ny
lem—3

—1 _,—1

L=2Tergg™ "s

T
10" K

3 (QHH)]CT
€ — —
2 nygmy

~ 2.5 x 10'° [ergg™ '] (

» Then, the bremsstrahlung cooling time is
1

1/2
1O7K) (

Vs
1000 kms—1

€
tcool = Z ~ 29 [Myr] (

~ 34 [Myr] (

)(

P1/ Pl/ Tl P2, PZ/ T2 i P3, P3/ T3
—_— |—> —>
Uy Uy y Uz
Thermal Out of i Thermal
Equilibrium Equilibrium i Equilibrium
Shock
Front

The structure of a plane parallel radiative shock
[Figure 5.3 Ryden]
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» During this time, the gas will move a distance, relative to the shock front:
Uj
_tcool

V. 2 ny —1
~ 8.7 [k > ( )
8.7 kpc] (100() kms—l) lcm—3

This implies that the approximate thickness of the radiative zone for a strong shock is a long
distance compared to the scale height of the ISM in our galaxy. Thus, the hot gas produced by

high-speed shocks doesn’t have time to cool before the shock runs out of gas to shock. << No
cooling of the shock gas in our galaxy>>

- At lower temperature (10° K < T' < 2 x 10" K), corresponding to slower shock speeds
(80kms™! < uy =V, < 1200kms™ )

» The collisionally excited lines do most of the cooling. A useful approximation for the cooling rate gives

V; 3.4 _q
teool & 6600 [yl‘] ( ) ( i >

Rcool ~ thcool ~

100kms—! lecm—3

» This yields a thickness for the radiative zone.

v v !
cool ~ —Stcoo = 0.17 - ( )
Hoool 4 ! pe (100 kms—1 ) lcm—3

» These shorter time scales and length scales mean that radiative cooling is more effective at
changing the structure of slower shocks.
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Homework (due date: 05/22)

[Q13]

The “cooling time” Teoo) = |d1nT'/dt| 1. Suppose the power radiated per unit volume A can be approximated
by

A~ Angin, T3 7 +0.0217;
for gas of cosmic abundances, where A = 1.1x107?? ergcm?® s~ 1, and Ty = T'/10° K. Assume the gas to have
nyge = 0.1ng, with both H and He fully 1onized.

Compute the cooling time (at constant pressure) due to radiative cooling

(a) in a supernova remnant at 7' = 10" K, ng = 1072 cm 5.

(b) for intergalactic gas within a dense galaxy cluster (the “intracluster medium”) with 7' = 103K, ng =
1073 ecm™3.

[Q14]

Consider a strong shock wave propagating into a medium that was initially at rest. Assume the gas to be
monatomic (y = 5/3). Consider the material just behind the shock front. The gas has an energy density
Uthermal Irom random thermal motions, and an energy density ugqw from the bulk motion of the shocked gas.
If cooling is negligible, calculate the ratio %gow /Uthermal 1N the frame of reference where the shock front is
stationary.



