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Stochastic Heating of Very Small Grains

« Temperature History:

» Two effects become increasingly important with diminishing grain size: (1) the heat capacity of
the dust becomes sufficiently small that single-particle hits can cause large spikes in the dust
temperature and (2) the absorption rate with photons becomes sufficiently low that the
cooling of the dust between successive collisions becomes important.

» Therefore, it is clear that one cannot speak of a representative grain temperature under
these conditions - one must instead us a temperature distribution function.

» As the grain size is increased, however, photon absorption events occur more frequently,
the temperature rise at each event is reduced by the increased heat capacity, and
temperature varies over only a small range.

- Energy content:

- Heat capacity = heat energy required to raise the temperature of a material

- When a grain is at a temperature T, the vibrational (internal) energy content of the grain

(per unit volume) is
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where C(T) is the heat capacity of the grain (per unit volume) at temperature 7.

- Small grains are subject to temporal fluctuations in temperature, because their steady state
internal energies are small compared with the energies of absorbed UV photons.

Usteady (T) < hv

VCAT =hv: AT 1 as VC | for a given absorbed energy hv




(1) Peak Temperature

- Peak Temperature

» Heat Capacity: We need to know the heat capacity for dust grains to estimate the

peak temperature.

In the low temperature limit: For a plausible grain material, the expected grain temperature
would be in general lower than the Debye temperature; we may then use the Debye approximation

for the heat capacity:

N, 127 /T \°

V = (47/3)a” = volume of a grain particle
N, = number of atoms forming the grain particle

ng = N, /V =number density of atoms in the grain.
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Here, Debye temperature 0, ~ temperature at which
the highest-frequency mode is excited.
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Heat capacity of graphite and silicate
Fig 2 of Draine & Li (2001, ApdJ, 551, 807)
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In the high temperature limit: the heat capacity is given by the rule of Dulong-Petit:

N
T) ~3—
C(T) = 3~ ke

» Internal Energy: The internal energy at 7 is then given by

U(T) =V / ) O(T")dT’

37 7\’
U(T) ~ TNakBT (%) at low temperature
~ 3N kT at high temperature

The internal energy in the low temperature limit,
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Therefore, the internal energy of a very small grain is much smaller than the absorbed photon

energy.

B = 1.0 x 10~ ferg 2000 A U(Ty) < hv  for a < 270 A
| A U(Ty) > hv  for a>> 270 A

Now, the peak temperature can be estimated from:
h =U(T,) — U(Tp)
The peak temperature can be estimated as follows:

hv =U(T,) —U(Ty) ———> U1, ~hv

T ~ 118K 2000 AN\ /0 \ (£)1/4 p e\
b A 10 A 12 2.24gcm™3 420K

The peak temperature for a small grain is in general much higher than the equilibrium

lemperature.
However, the internal energy of a large grain is much larger than the absorbed photon energy.
Therefore, large grains will stay in a steady state with an equilibrium temperature.



(2) Heating and Cooling Time Scales

« Time Scales

- There are three time scales to understand the temperature fluctuation of very small
grains.

» Absorption time scale : How often a grain will absorb a photon?
» Diffuse time scale : How fast the absorbed energy is distributed over the whole grain?

» Cooling time scale : How fast the excited vibration modes radiates back the energy to the
interstellar space?



- Absorption Time Scale:

» The absorption rate of starlight photons by very small grains is

N Ld
(ddtph>abs = / uhVVC Qabs(V)TfCL2 = /dV

Qabs (v)ma”

B. T. Draine does not provide an approximate formula for the absorption rate, but we can roughly

estimate it from the heating rate.

(djc\lffh)abs - <h11/> (éf)abs = (1a*) (Qabs),

Here, (hv) is a typical photon energy of the ISRF.
We will take (hv) ~ 1 x 10~ erg for A ~ 2000 A.

U/ (hv) = 1 x 107t U [Cm_3]

From the right figure, we take

(Qabs), =~ 1 x107%(a/10A) [cm?]

Recall that the absorption efficiency is proportional

to the grain size in the Rayleigh limit.

Hence, the photon absorption rate for small grains is given by

AN,
dt

) ~1x107°U(a/10A)% [s71]
abs

1F
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[Fig 24.2, Draine]
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- Absorption Rate for Large grains (using the absorption cross-section in the figure)

dN h - 2 UxC
( dtp >abs ~ (7TCL )<Qabs>* (hu}

~ 0.17U(a/0.1um)*° [s7 '], for silicate
~ 0.75U(a/0.1um)*%° [s~'], for graphite

» Absorption time scale:

labs = (deh/dt)_l

abs

~1x10°U""' [s] a~10A  small grain
~1.3—5.9 U_l [S] a ~~ Ol,um |arge grain

» In diffuse interstellar space, the smaller component of interstellar dust will absorb
star light photons once in two hours (for a ~50A) - 11 days (for a ~ 10A). Large dust
grains (a ~ 0.1um) will absorb photons once in a couple of seconds.



- Diffuse Time scale: How long does it take to heat up the whole grain?

» The macroscopic diffuse equation:

orT
Fri DV?T  where D = diffusion coefficient
taig ~ a”/D

~ 1012 s] (a/10 A)Q(m—? cm> S—l/D) a typical D value from (Duley 1973, Ap&SS, 23, 43)

» Sound crossing time: Energy disturbance in a solid is transmitted to its lattice vibrational
modes (photons) and phonons travel at the speed of sound, which is about a few 105 cm/s.

tdiff ~ 2&/03
~2x 1072 [s] (a/10A)(10° cms™ ! /c,) ¢, ~ 1 kms™!in a cold material.

» We may conclude that the grain is heated to a peak temperature instantaneously
upon the absorption of a photon, which is determined by:

Ara3 [T

hy = C(T")dT’ C(T') = heat capacity per unit volume

3 Jr,

where T, is the temperature just prior to the absorption event.



The cooling time scale

v

The time evolution of grain temperature can be calculated by solving

dU
E - _(471-) (7-‘-0’2) / QabsBl/dV — —47TCL2 <QabS>T O-SBT4
4rra’
ir 3 =T ema

o 4
dt aC(T) (Qabs)p 056 T / QunsBydy — T35 74

v

» The initial cooling time scale can be estimated by

b U hv = 1.0 x 107 [erg] (200;)2&)
|dU / dt| . 2 4
" A= = 4ma <Qabs>T O'SBT
~ N dt |, :

A

» We will assume an approximate, absorption efficiency, following S. S. Hong (&=, 1979,
JKAS):

4d1a 21ra

> _
Qabs (V) = = Qo(Ao/A) < Qabs(v) = 4——Tm (22 - ;) Rayleigh limit

Here, Qo ~6.283 x 1072 x(a/10A)
Ao = 2000 pm
p=1 x ~ 1



From the previous formula for Qabs (V) = Qo(Ng/N) P

the planck-averaged absorption efficiency is given by

s
(Quudy =TT+ B)C(+ 5)0 (1)

hvg One may want to use the following

formula for f = 2:
kT) for 6 =1

= 3.83220 Qg (h—VO (Qups). = 1 %1070 (a/0.1 pm) (T/K)?

~ 3.950 x 1072 x (a/10 A)(A/2000A)(T/118 K)

The cooling rate is:

A= 47'('&2 <Qabs>T O'SBT4
= 5.46 x 10~ [ergs™] x(a/10 A)3(A/2000 A) (T /118 K)®

The cooling time scale at the peak temperature is:

U(1,) _ h

tCOO ~ -
' dujdt] T A
~ 0.18[s] x ' (10 A/a)? (118 K/T)®

Because of the strong temperature dependence of the cooling rate, the grain actually needs
much longer time (up to 104 sec) to radiate its excess (absorbed) energy back to the
interstellar space.

In summary, Labs > tdiff) Labs > tCOOb tcool > tdiff
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The Stochastic Time Evolution of Grain Temperature

Monte-Carlo simulations of the temperature fluctuation:

See Draine & Anderson (1985, Apd, 292, 494) and Krugel (The Physics of Interstellar Dust, 10P).
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Temperature versus time during 10° s (~1 day) for five carbonaceous grains in two radiation fields:
the local starlight intensity (U = 1; left panel) and 102 times the local starlight intensity (U = 102; right
panel). The importance of quantized stochastic heating is evident for the smallest sizes.

[Fig 24.5, Draine]



- Temperature History:

» Two effects become increasingly important with diminishing grain size: (1) the heat
capacity of the dust becomes sufficiently small that single-particle hits can cause large
spikes in the dust temperature and (2) the absorption rate with photons becomes

sufficiently low that the cooling of the dust between successive collisions becomes
important.

» For very small dust grains, one cannot speak of a representative grain temperature
under these conditions - one must instead us a temperature distribution function.

- Temperature Distribution Function:

» Consider a large ensemble of identical grains in some interstellar environment. Let use
define:

P(T)dT = the probability that its temperature lies in the interval from Tand T + dT.

The probability density is of course normalized: / P(T)dT =1
0

» The temperature distribution will depend on grain size, composition, and the intensity (and
spectrum) of the radiation illuminating the grains.



» For normal interstellar grains of average size, the temperature oscillates only a little
around an equilibrium value 7., and in the limit of large grains, the distribution density

function approaches the delta-function:

P(T) = 6(T — Teq)

where the equilibrium temperature follows from the steady-state balance between
emission and absorption:

First, calculate the equilibrium temperature.  Second, the emissivity (per solid angle per area per time)

/Qibs,],/dy = /QibSBV(Teq)dV ”% €y — WQQQibSBV(Teq)

» Even for a very small particle we will assume that its radiation obeys at any time
Kirchhoff’s law, so in the case of a sphere of radius a, we can express the average

monochromatic emission per solid angle by

€, = ma’Q** / B,(T)P(T)dT

Although the emission of a single such grain is not time-constant, the whole ensemble
radiates at any frequency at a steady state.



- The following figure shows temperature distribution functions calculated for graphite/
PAH dust grains of selected radii, exposed to the ISRF of Mathis et al. (1983).

» We see that the distribution function for a grain with a = 10A extends to T = 400 K - this is
the temperature that this grain will be heated to when it absorbs a single photon with
energy just below the Lyman limit cutoff at 13.6 eV.

» Most of the energy radiated by the grain is radiated while it is at temperature above 100 K -
the typical absorbed photon raises the grain temperature to T > 200 K. Such grains radiate
strongly in the PAH features at 7.7, 8.6, and 11.3 um.
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Method of Calculation

- Monte-Carlo simulation (Draine & Anderson 1985)

- The cooling flux of low energy infrared photons and heating by photons with A > Ac (= 1000xm)
are assumed to be continuous. However, heating by photons with A < Ac must be treated as
a sequence of stochastic absorptions of single energetic photons.

- The probability a photon is absorbed by a grain in a time interval (¢, t + df) is given by

Ac 1
: . 2 ~abs UAC —1 t=—-Iné(0<EKT
P(t)dt = pe Ptdt P~ /O 0 Q" —dA [s7] ; 5 §(0<§<)

¢ = uniform random number

Heating of the grain by photons with A > 4. = 1000 x#m is modeled as continuous.

- The energy (wavelength) of the absorbed photon is randomly determined according to

l@d)\ abs (yyc/hv)

dA
pdA anbS (urc/hv) dX

- The temperature of the grain is then assumed to be immediately increased to that estimated
from:

he  4ma® (1 3
<= 7;“ C(T")dT’ < gy — 2
To

C(T)dT

Here, 1 is the temperature just prior to the absorption event.



- For each grain type and size, the temperature evolution can be followed by solving
the differential equation:

dU o0 b o0 b EHeating of the grain by photons with
ar 4r%a’ [/ Q3. (t)dX — / Q3 BA(T(t))d)\] A > A, = 1000 ym is modeled as
i " CONNUOUS.
continuous heating continuous cooling
dU  4rma’ dT
R C(T)=——
dt 3 (7) dt
dT’ 37
_> f—

The right side describes the difference between the power absorbed from the
radiation field J, and the cooling rate.

- Having followed U(¥) or T(t) over a long period, one can obtain the probability

density P(T') from the fraction of time that the grain has spent in the temperature
interval T'and T'+ dT.



Discretized steady state distribution function

- It is far more efficient to solve directly for the discretized steady state distribution
function.

» Guhathakurta & Draine (1989, ApJ, 345, 230) developed a fast method to calculate the
temperature distribution function.

» Draine & Li (2001, ApdJ 551, 807) presented a statistically exact, and quantum-mechanical
treatment.

» Desert et al. (1986, A&A, 160, 295) also developed a different method to compute the
temperature distribution function, which is publicly available (DustEM; https://www.ias.u-
psud.fr/DUSTEM/; Campiegne et al. 2010, A&A, 724, 44).

» Dwek (1986, ApJd, 302, 363) presented a method to calculate the temperature fluctuations
In dust particles when they collide with low-density, X-ray emitting electrons.

- Guhathakurta & Draine (1989)

» When a grain absorbs or emits a photon, its internal energy U(T'), which is a function of

temperature, changes. We bin U(T) into N states (bins) UJ of width AU-.
Let P, the probability for a grain to be within the J th state.

Let A r; the transition probability that a single grain changes from state : to /.


https://www.ias.u-psud.fr/DUSTEM/
https://www.ias.u-psud.fr/DUSTEM/

» In statistical equilibrium, for each level J the number of populating and depopulating events
must be equal.

Z APy = P; Z Ag; Note that P is proportional to the
k] k] energy width AU;

population  de-population
With the purely mathematical definition:

Ajj == Ay

k#j
We can write the equilibrium equation as the following matrix equation:

N
> ApPr=0
k=1

» Only N — 1 of these N equations are linearly independent.

One may first put P, = 1(or Py = 1) and then solve for »,---,Pn (or P1,---,Pn_1), and
then rescale them:
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- Matrix Elements

» Heating: .
4w (C2P3 ], .
Ay = — AU, where hw = |Ux = Uyl (j < k)
» Cooling:
ArC2s B, (T;
A = Ty ( ‘7>AU,r€ where hv = |U; — Ug| (j > k)

hv

» Above the main diagonal stand the cooling elements, below those for heating. The energy
balance requires for the cooling and heating rate for each level J:

heating: ZAkj Uk —Uj| = / ArC?™s J,dv
k>j 0

cooling: ZAkj U — Uj :/o 47TCSbSBu(Tj)dV
k<j

» “Thermal Continuous” Cooling Approximation: As cooling proceeds via infrared
photons which have low energy, their emission changes the grain temperature very little.
This suggests that in cooling one needs to consider only the transitions to the
levels immediately below (k =j—1, j —> j—1).



One can, therefore, put all matrix elements Ay; above the main diagonal to zero, except
Aj—15 . Then, in order to fulfill the energy equation, the cooling elements have to be

written as:

ZAkj\Uk—Uj\Z/OO‘”C?bSJvdV A = ! /004 C*s B, (T;)d
ey 0 7—1,7 ‘U]_UJ_]_‘ . e, I/( ]) v

Aj_l’j |Uj_1 — Uj‘ = / 47703bSJVdU
0 Akj:()ifk<j—1

» However, heating should not be reduced to single transitions j — j + 1.

» Guhathakurta & Draine (1989) describe a simple trick to avoid numerical rounding errors in
calculating the temperature distribution.

Setting X; = P;/P1 (X; = 1), we can obtain the steady state solution for the distribution
function:

C‘li (Zg) — Ay 1fPf—;P ZA;U _\l'

N
A ZBfJ . where By, = ZA;W- (f >7)
=i k=f

Xy =

However, in practice, even adopting the trick, calculating the temperature distribution
function is a bit tricky; it is hard to define a proper interval for U or T.
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Infrared Emission from Grains

In a typical spiral galaxy, perhaps 30-50% of the energy radiated by stars is absorbed
by dust grains, and reemitted in the IR. The spectrum of this emission is determined
by the temperatures and composition of the dust grains.

IR emission is a quantum process - a radiative transition between an upper and lower
vibrational level of the grain. However, it has been shown (Draine & Li 2001) that a
“thermal” approach provides an excellent approximation.

In the approximation, the emissivity of a population of grains can be written:
_— dnz dP 2158 7 o
477, —4W;/da - /dT (dT)w C(i,a)B,(T)

where (dn;/da)da is the number density of grains of type i with radii in [a, a + dal].

» We, therefore, need a grain model to provide the size distribution for each composition, the
absorption cross sections and temperature distribution functions.

» For large grains, the temperature distribution is sufficiently narrow that it may be
approximated by a delta function dP/dT" — 6(T —T.y), where Teq is the steady-state
temperature for which the time-averaged cooling equals the time-averaged heating.

» Butfor a < 0.01 yum = 100 A, one should use a realistic temperature distribution dP/dT
rather than a delta-function.
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- Model IR emission spectra have been calculated by Draine & Li (2007).

>

>

The spectra shown in the following figure is normalized by the ISRF strength U.

The peak in the Far-IR corresponds to emission from “large” grains. The equilibrium
temperature of the “large” grains are approximately:

Teq ~ 20U K

The peak shifts toward shorter wavelength as U increases and the grains become warmer.

the peak (Al)) .. OCCUrs at Apeax = 140 U~1/¢ ym .

The additional peaks at shorter |

wavelengths are due to vibrational R

modes of PAH grains; these features P10

account for ~25% of the total power, but T

these features (normalized by the total i I 1

power) hardly change as the radiation o0l 026 |

intensity is changed. A

The PAH emission occurs following z WL/

single-photon heating of very small 210# B

grains. =R SR

Apeak ~ 140 y—1/6 (m SN\ N \\:
10-28 L ] . \.\..\?-...\
1 10 107 103
A (um)

[Fig 24.7, Draine]



Evolution of Interstellar Dust in Galaxies

From B. T. Draine’s keynotes

- Sources
- Stellar sources: AGB stars, Supernovae, Novae,...

- Interstellar: Growth of solid material in the ISM by accretion of gas onto grain
surfaces

» If stellar injection dominates: then interstellar dust is mainly “stardust”, with composition of
stardust.

» If interstellar growth dominates: then interstellar dust consists mainly of whatever materials
can grow (and survive) in the ISM.

- Both processes are active. Which is dominant in the Galaxy?

* Sinks Sputtering: a phenomenon in which
] ) C : microscopic particles of a solid material are
- Destruction of solid material in ISM  ejected from its surface, after the material is
_ _ :bombarded by energetic particles of a ’
» sputtering (in shock waves and shock-heated gas)  plasma or gas.
» grain-grain collisions = vaporization . Coulomb explosion: the effect of a
_ i molecule moving at high speed striking a
» photodesorption : solid; binding electrons being torn off, and

. _ _ _ i the resulting charged constituents separating
» other (cosmic rays, Coulomb explosions, sublimation,...) :due to Coulomb repulsion. '

- Incorporation Into protostars Photodesorption: a quantum effect whereby :
: a single photon causes the desorption of an

- Removal in galactic outflow Eatom or molecule from a solid surface.
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Stellar Sources - Example

» Observationally, it is seen that these “dust nurseries” exist in the dense, cool stellar winds
of AGB stars, old planetary nebulae, and the cooling envelopes of novae. In these winds,
the densities are as much as ~ 10° cm-3, and the temperatures can drop below the
condensation temperature of many heavy elements (~ 1000 K).

» For instance, Mira variable stars are AGB stars with substantial emission at mid-infrared
wavelengths. In oxygen-rich Mira variables, most of carbon is locked up in gaseous CQO,
and the main condensates are silicates. Oxygen-rich Mira variables often have a strong
silicate emission feature at A ~ 9.7um.
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» In carbon-rich Mira variables, the mid-IR thermal dust continuum is frequently
accompanied by an emission feature at A ~ 11.3um, due to the presence of SiC.
However, in the winds of carbon-rich Mira variables, much of the carbon condenses out in
the form of PAHSs rather than silicon carbide grains, because of the scarcity of silicon
relative to carbon.

» Atypical mass loss rate for a Mira variable staris A ~ 10~%M yr—. Given a dust-to-gas
ratio of ~ 0.01 (by mass, considering only hydrogen), this implies that a Mira variable can
produce as much as

Must ~ 1078 Mg yr=!

of dust during its ~ Myr time scale for copious mass loss.

Mdust ~ Mdust X Atlife ~ OOlM@

The newly formed ~ 0.01M of stardust is spread into the ISM, where it undergoes
competing processes of growth and destruction.
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Growth in ISM

* How dust grains form?

- Even in a fairly dense molecular cloud core, with 3x104 atoms per cms3, at cosmic
abundances we expect only 1 Si atom and 8 C atoms per cms3. How can we make
such widely separated atoms to form a dense solid grain?

- QGas accretion on grains - How fast dust grains can grow?

4

Let’s imagine a solid spherical grain made of element X. The number density of X atoms in
the interstellar gas is ny, and the rms thermal velocity of an X atom is

1/2
Dy — KT\ 1" =the gas temperature
X 2mx mx = the mass of an X atom

If there exists a “seed” grain of radius a, it will accrete additional X atoms from the
surrounding gas, and the grain’s mass will grow at the rate
dMg,
dt

= (nxvx)(ma®)mxP;

where Ps is the “sticking probability”; that is, the probability that an X atom striking the
grain will stick instead of bouncing off. The mass of the spherical grain is

4
My, = ga?’pgr per = the bulk density of element X.
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» We can rewrite the mass growth rate as a radius growth rate:

da nxvxma’mxPs nxvxmxPs

dt AT pgra® 4pgr

» Thus, the growth rate da/dt is independent of the grain size a, unless the sticking

probability P, is a function of grain size. For carbon atoms in the cold neutral medium (T ~
100 K, ng/nu ~ 3 x 107%.

___________ See slide 31, the residence time scale of
--------------------------- atoms (grains) in the ISM.

dt ny 4pgr

zO.Q[#m/Gy}]PS( nH ><T>1/2

30 cm—3 100 K

» This simple calculation suggests that grains can grow to the observed size during a
time scale shorter than the age of our galaxy as long as atom-grain collisions are
sticky.

» It becomes much easier to grow grains, if there exist seed grains produced in regions that
are denser and/or cooler than typical regions of the ISM.

Grain-Grain collisions: Dust grains can grow as the result of grain-grain collisions.
However, they can also be shattered into smaller fragments by high-speed collisions.

[shattering: action of breaking something into small pieces]



Destruction of Grains: Sputtering in Hot Gas

- Sputtering: Grains can be vaporized by shock heating in supernova blast wave.

» Gas atoms moving at slow speeds can be accreted onto a dust grain. However, in a hotter gas, the
collision of high-speed ions can erode the grain, chipping away one or more atoms at a blow. This
process of erosion by high-speed atoms or ions is called sputtering.

» The molecular bonds holds together the atoms in a dust grain. They typically have a bond energy
Ey g~ 5€eV. Thus, if a dust grain is surrounded by gas, the gas particles will cause sputtering if

2Bpon Eyon
T 220 d~40,000K< b d)

3k HeV

» Detailed studies: For temperatures in the range 106 K < T < 10° K, the sputtering rate for a graphite or
silicate grain can be approximated as

This sputtering rate corresponds to a lifetime:

a

a Ny —1
T ~0.1M ( )
PO\ da/dt| 7 (0.1 um) 1cm—3

In a supernova remnant, ny ~ 1 cm™ and T > 10° K, giving a lifetime of 0.1 Myr for a typical dust
grain in the ISM.

» In the intracluster medium of the Coma Cluster, ny ~ 3 X 10 cm™ and T ~ 10° K, the lifetime is
~ 30 Myr for a typical dust grain. Thus, we don’t expect the intracluster medium to be dusty unless
there are strong Galactic outflow sources.[However, there is indirect evidence of the existence of dust
in intracluster medium, from the study of statistical reddening of background galaxies/quasars.]
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- In low-velocity gas, Si is heavily depleted.
- Gas moving at high speeds in ISM
» has been accelerated by a shock wave.

» shows evidence of grain destruction: enhanced gas-phase abundances of Si and other
species that are normally depleted.

o T T T T T T 1 T T T
: ' :
S oF v+ . . "
° |

|
E! ke == 7
5 L YR L
o o =TT A « HD 7582
© _I___ .0°. // X A /J' C0| —
o ax 7 x HD 28497
S s o HD 50896
g L .+ + ; Ori -
0 B ¢ ORI
< O 23 OR|
o -2 | | | | | | | | 1 |
9 I00 20 30 40 50 60 70 80 90 100 1O

Velocity (LSR) in km/s [Fig 1 in Cowie (1978, ApJ, 225, 887)]

- Survival time of random Si atoms in grain is tqest ~ (3 —5) x 10% yr .
(Barlow 1978; Draine & Salpeter 1979; Dwek & Scalo 1979, 1980; Jones et al. 1994, 1996).



Stardust or Growth in ISM: (1) Dust Mass Balance in the ISM

| | - MW: star formation more-or-less steady for
Flow of baryons in the Milky Way.  past ~ 8 Gyr (Rocha-Pinto et al. 2000):

M > 1 M stars are dying at ~ same rates
as being formed.

Infal) @ * Mgy = 5 X 109M® in MW
~1 Mg/ Yr
+ Sources and Sinks:
Mgy ~ + IMg/yr : Infall
stellar winds

Fo;riltd?{lon planetary nebulae ~ — 3M/yr : Star Formation
o Total: p~1M@/yr ~ + IMy/yr . StellarOutflows

@ Net : — IM,/yr

02, /o @ . ISM declining on timescale Mg/ | Mygy| ~ 5 Gyr
AEhiof " - Atom (or grain) in ISM incorporated in a star

B.T. Draine 2009.02.03.1337

on timescale
My 5x10°M,
SFR ~ 3My/yr

~ 1.5 Gyr

This is the Residence Time scale of atoms (grains) in the ISM.
Taken from B. T. Draine’s keynotes There is enough time that grain seeds can grow in the ISM.
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(2) Stellar Sources

Core-collapse SNe (e.g., Cas A, SN87a)

e Cas A: silicates, etc.

Maust < 0.14M -, (Arendt et al. 2014)
Injection of Gas and Dust (“Stardust™) from Stellar Sources Maust = 0.6M,, (Priestley et al. 2019)

gas dust stellar source
(Mg /yr) (Mo/yr) o SN87a:
0.4 0.002  Planetary Nebulae (~0.3/yr) Maust = 0.8M (Matsuura et al. 2015)

0.5 0.0025  Red Giant, Red Supergiant, C star winds ¢ (Cgq A. SN&7a: very young (pre-Sedov)
0.06 < 0.00017 OB, WR, other warm/hot star winds . .
much ejecta still unshocked

0.25 0.0002? Sne (1/100yr, ~ 1072M, dust/SN?)

001  0.00001 Novae (100/yr, 10-7M, dust/nova?) reverse shock — grain destruction
~1.2 ~0.005 All stellar sources how much SN dust survives to mix into ISM?
some does: presolar grains in meteorites.
® O-rich stars (O/C > 1) produce (mainly) silicate dust (C is in CO) S SN presolar grains iIl meteorites rare

e C-rich stars (C/O > 1) produce (mainly) carbonaceous dust and SiC (O is in CO) guess: < 10% Of SN-formed dust enters ISM

C and O combine to form CO, and the remaining atoms are

consumed for dust grains. e SN dust production: secondary importance today

possibly important in first ~10° yr of galaxy

Stardust Injection Rate
Mgust ~ 0.005 Mg /yr
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(3) Sputtering in Hot Gas

Substantial grain destruction occurs in a shock of Vi 2 220km sTtand T, =7 x 10°K.

A SN explosion ejects ~ 10°! ergs kinetic energy. The SNR blastwave shock-heats the
ISM.

In the energy-conserving Sedov-Taylor phase, the mass of the SNR would be

]\4SNRVS2 ~ 10°! ergs

220kms—! :
Vs

Detailed studies show that most dust grains materials are sputtered if V, > 220kms™".

V, > 220kms™!

Mgnr ~ 103 M (

Every ~ 10% the SN blastwave destroys grains in ~ 10°M,, of the ISM.

Therefore, the grain lifetime against destruction is: Lecture 11: The SN frequency in the Galaxy :
:is estimated to be one event every 30-50 yr. !

H X 109M@

~ 3
105 Mo /102 yr <0

tdest ~

This lifetime is short compared to 1.5 Gyr residence time.

MOST STARDUST WILL NOT SURVIVE
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Balance of Formation and Destruction

Total dust mass in ISM:  Mg,s ~ 0.007 x Mgy = 3.5 x 107 M,

Balance:

Stardust Injection + Formation in ISM = Removal

~ 3.5 x 10" M
~ 5 x 108 yr

~ 0.005 Mo yr~' + Formation in ISM =

Formation in ISM ~ 0.07 Mg yr—*

Stardust injection ~ 0.005 Mg yr—1

Formation in ISM
Stardust injection

Conclusion: Stardust accounts for only ~ 5-10% of interstellar dust.
~ 90-95% is grown from gas in the ISM.
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Molecular Clouds
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[Born-Oppenheimer Approximation]

Born-Oppenheimer approximation:

To a very good approximation, the motions of the electrons and nuclei could be treated
separately. The electrons move much faster than the nuclei.

This come about because of the great difference between the masses of the electron and a typical nuclei.

The slowly moving nuclei only sense the electrons as a kind of smoothed-out cloud. As the nuclei move
the electrons have sufficient time to adjust to adiabatically the new nuclear positions. (It is like flies
buzzing round an elephant - as the elephant moves the flies move with it.) The nuclei then feel only an
equivalent potential that depends on the internuclear distance and on the particular electronic state.

One separates the wavefunction for the motions of electrons from the wavefunction for the
motions of the nuclei. One can then consider the electronic wavefunction separately for each
position of nuclei, as if the nucle1 are held fixed.

Due to very different energies of the electronic, vibrational, and rotational states, these

interactions can be assumed to be decoupled. The separation of wavetunctions is referred to as
the Born-Oppenheimer approximation. Under the Born-Oppenheimer approximation, the total
wavefunction is a product of the nuclear, electronic, vibrational, and rotational wavefunctions.

wtot — 77b1r1uc77belwvibwrot




energy

e Order of magnitude of energy levels

>

- Electronic energy: ]

Rq =

As the separation between the two atoms R — 0 (at very small R), the overall interactions are strongly
repulsive. There is repulsion due to nuclear-nuclear interaction whose potential depends on Z,Z5/R.
There is also repulsion due to the electron-electron interactions, which also behave approximately as
1/R. However, these repulsive interactions are largely cancelled by the attractive electron-nuclear
interaction.

As R — o0, the molecule is pulled apart and it separates into atoms in a process known as dissociation.
The energy of the system at dissociation 1s clearly just the sum of the atomic exchange.

At intermediate R, to get binding there must be some region of R where the molecular energy is less
than the sum of the atomic energies. In this case, the electronic state is described as ‘attractive’ and
there 1s a minimum in the potential energy curve.

For a diatomic molecule, a stable chemical bond can form between two atoms that approach within a
distance of each other comparable to the Bohr radius a, = h*/ mecz. Then, the electron energy will be
given by

2 h2
Eelect ~ meUQ — L ~ 2 (% p X ag ~ ha uncertainty relation) — visible/UV (a few eV)

Me  Me
’ -0 (a~1A)
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- Vibrational energy:

If the two nuclei are displaced from the equilibrium separation R by a displacement comparable to

¢ ~ ay, they will vibrate about the equilibrium position with a frequency w,;;, such that the vibrational
energy contained in the motion and displacements of the two nuclei (of typical mass M) will be
comparable to the depth of the electronic potential well.

9 9 where w = frequency of vibration.
vaib a/o Y Eelect
M = mass of the molecule.

Then, the vibratinal energy is

1/2  p? 1/2 .
e () Baew = Near-IR/ Mid-IR

EvibNﬁwN ( Vi

Mea?

- Rotational energy:

The nucle1 can also rotate about each other. Then, the energy of rotation is

L? R+ 1)

Frot ~ — ~ — radio
21 21

where [ 1s the moment of inertia of the molecule: [ = Mag. Therefore, we obtain

Me

Erot ~ (M) Eelect

me\ 1/2 m
Faect : Evip @ Eiot =1 (—e) ; (—e)
lect b t M M

for hydrogen  ~0.02 ~0.0005

In summary,| E = E . + Eyip, + B
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""lﬂV\M/\/\/\

1 uv V|S|ble NIR FIR submm mm
Electromc Vlbratlonal R(')tational\ I
o transitions transmons transitions
Q
= 0.01F |||l I -
L
S
3 C%/
< 1074 ‘ -
. - PP . 9 | Y |
0.1 100 1000

Wavelength, A [pum]

Molecular transitions.
The different types of transitions are illustrated with the CO molecule.

[credit: Frédéric Galliano]
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Schrodinger equation for a diatomic molecule

For a diatomic molecule with N electrons,

N

h? \V& h? V2 h? Z V2.V
- - - q —|_ e E \IJ ) ) 1 —
( 2M 4 A oMp P 2Mme P ’ (R R, {ri}) =0

The first two terms are the kinetic energy operators for the motions of
nuclei A and B, the third term gives the kinetic energy operator for the
electrons, V, is the potential and £ is the total energy of the system.

The potential is given by the various Coulomb interactions within the

molecule:

N N i—1 o

7 ge? n e N ZaZ e’

"B; R

N
Z 7 4€?
Ve —_— — -
T Az
i=1 A

/r‘. .
i=1 i=2 j=1 Y

(1) attraction of the electrons by nucleus A
(2) attraction of the electrons by nucleus B
(3) electron-electron repulsion

(4) nuclear-nuclear repulsion

wave functions.

\Ij(Rz‘h R37 {rl}> — we({ri})wn(Rz% RB)

 Born-Oppenheimer approximation: One can write the wave function as a product of electronic and nuclear



Then the equation becomes

l(-szl Va- 2?23 Vi - E) w(RA,Rm] ({r}) +

.
( I, ng —+ ‘/e> %(I‘i) — Ee@De(ri)

This equation is solved separately for each value of the internuclear separation R.

Then, the resulting eigenvalue E. is the electronic energy at R and gives the|electronic potential V(R) = E,

upon which the nuclei move.

The equation for the wavefunction of nuclei is obtained to be

h? 2
(_ IM 4 Vi - oMp Vs +V(R) - E) Yn(Ra,Rp) =0 where V(R) = E..

Here, E (the eigenvalue) is the total energy of the system.
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* The Schrodinger equation for the nuclei:

h? K2
(_ 2M 4 v?“ - IMp VZB +V(R) - E) Vn(Ra,Rp) =0 where V(R) = F..

The equation deals with three types of motions of the nuclei: (1) translation of the whole system,
(2) vibrations, and (3) rotations. The motions can be separated into the translational motion of the
center-of-mass of the system plus the internal motion of one body in a ‘central’ potential, which
depends on the distance between the particles. The effective mass of this one-body problem is the
reduced mass:

The Schrodinger equation for nuclear motion, neglecting the translational motion, becomes:

R _, B

where R = (R, 0, ¢b). R is the internuclear separation, (€, ¢) is the orientation of the molecular
axis relative to the laboratory z-axis.

The vibrational and rotational motion cannot be separated rigorously. However, as a good first
approximation, the vibration and rotational motion may be separated.

wn(R) — wvib(R)wrot (‘97 ¢)
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Then, we obtain two equations for the rotational motion and vibrational motion:

S h? 1 9 %, 1 0?
angular equation: ) _ in 0 _E 0.6 =0
{ 2uR? |sind 00 (Sm 50 ) T s agr| Ty Yretl6:9)
» the angular part of the Laplacian operator V2
h? d?
' 10N: — 5 59 — Ey | Yy =
radial equation: [ i dRE T V(R) ] Uvib(R) =0

(1) The solution of the angular equation 1is:

Yrot(0,0) = Yy (0,¢0)  spherical harmonics
h2
E, =
21 R?

J(J +1)
(2) The potential V(R) is not a simple function and thus the radial equation has no general

algebraic solution. But, we can approximate V(R) about its minimum by a parabola:

1 &V
2 dR?|5_p

(R—R.)>+ O ((R—R.)’) < W0 at R=R,

VR) = V(R)+ .

1
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Setting the zero of energy at the minimum potential, V, = V(R,) = 0, the radial equation becomes

? d* 1 )
_ﬂd—}zg+§k(R_Re) — By | Yvin(R) =0

This 1s the QM equation for the harmonic oscillator with the spring constant k. The energy levels
of this equation are:
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[Energy Levels]

 Energy Levels

An electronic transition consists of vibrational bands, which in turn are made up of rotational
transitions.

1
E,(v,J) = V,(rg) + hvg (v + 5) + By J(J + 1)

h? L
Vo = ;d—; B, = i I = W% = moment of inertia of the molecule.

Here, q denotes an electronic state.
Angular Momentum

Molecules are not spherical and the orbital angular momentum of the individual electrons is no
longer a conserved quantity.

- For diatomic molecules, the total orbital angular momentum L is strongly coupled to the nuclear axis.

- It is therefore necessary to consider the components of L, designated £ (or A), along the diatomic
nuclear axis which, by convention, is taken to define the z-axis of the system.

- While the value of the total orbital angular momentum in a diatomic molecule can change, its projection
onto the diatomic axis is conserved.

- As the projection of L onto z-axis can be either positive or negative, states with £ # 0 are twofold
degenerate while states with £ = ( are singly degenerate.
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[Labelling of Electronic States of Diatomic Molecules]

o Heteronuclear diatomic molecule (e.g., HD, OH, or CO): The notation of the electronic structure of a
diatomic molecule is similar to that for atomic structure under LS coupling. Each electronic state 1s
designated by the term symbol.

In some literatures, the following symbol

QS—|—1£ is used.
Je. ZS—I—lA
Q)

S = total electronic spin
L = projection of the total electronic “orbital” angular momentum along the internuclear axis
(— L)
Jeo, = projection of the total electronic angular momentum onto the internuclear axis

=[L+S.| (= Jez=L.+5; S.=-5-S+1,---5-1,8)
e The uppercase Greek letters to denote the total “orbital” angular momentum.

L=%]1LA,-- (for L, =0,1,2,--) Recall S,P,D, --- in the atomic spectroscopy.

e If the term symbol £ is ¥ (L; = 0), then additional superscript + is applied.

[+ if symmetric under reflection through (all) planes i Nearly all ¥ states are + state . :
L= containing the nuclei, One exception is Oy, of wlgich the
— if antisymmetric under reflection through a plane | lowest electronic state is "2, .

\ containing the nuclei.




47

e Homonuclear diatomic molecule: Diatomic molecules with identical nuclei (Hz, N2, Oz, C») are
referred to as homonuclear. The energy levels of homonuclear diatomic molecules are designated

by

QS—|—1£ 2S—|—1Aug
u,qg )

( g (“gerade”) if symmetric under reflection through the

center of mass, = even (A 3stE)
u  (“ungerade”) if antisymmetric under reflection through the
center of mass. —odd (&A8tE)

Uy g =

For the special case of 2 state, a superscript + or - 1s added.

25+1 Z:I:
u,g

* The electronic states of diatomic molecules are also labelled with one of the following letters,
appearing in front of the term symbol.

X labels the ground electronic state
A, B, C, ... label states of same spin multiplicity as the ground state
a,b,c,... label states of different spin multiplicity to the ground state
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EXampl@SZ S Ny -------------------------------
'Y denotes a state with S =0 and £ =0 P — 11 H 1s; , 2
°II denotes a state with S =1 and £ =1, etc D — A CN3 iszgszgpf

F - o 1S22S22p4
G —>T O lsasap ]

For most (stable) diatomics, the electronic ground state is a closed shell, meaning that it is ' X.

- Examples include H», N> and most other homonuclear diatomics. The exception is O, which has a *%.
ground state. (Each O has 4 valence electrons, and thus S = 1)

- CO and many other heteronuclear diatomics with an even number of electrons also have '3 ground
states.

- Diatomics with an odd number of electrons usually have S = 1/2. For example, HY . CHT,and CNall
have Y ground state.

- CH, OH and NO all have £ = 1 and thus their ground states are °TI. These molecules have extra lines
in their spectra due to a process called A-doubling.

L= 0 1 2 3 4 ..
Orbitals o T 0 o .
States x II A o T.
Degeneracy 1 2 2 2 2 ..

Letter designations for projected total orbital angular momentum.
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[Energy levels of Molecular Hydrogen]

150,000 i~ =1)+p
UH—H
H(ls)+ H(2l) =
100,000
cm™! -
50,000 —
H(1s)+ H(ls) =
o | 4.48 eV
O-—-—-—-—---- v . s i e s s . e o . i i, v i S o o Tt o S o g o o o
] I | |
0 1 2 3 4

20

15

(eV)

10

e The short horizontal lines in each of the bound
states indicate the vibrational levels.

e The transition from the ground state X'Y/ to
the excited states B'Y} and C'II, are called
Lyman and Werner bands.

Werner band: C'TT, — XIZg,L at A ~ 970 — 1650A
Lyman band: B'Z} — X'X¥ at 2 ~ 930 — 1240A

In principle, states are labelled alphabetically in
ascending energy order. However, there are many
exceptions.

The lowest triplet state of Hy is the b3+ with
the a32; lying somewhat higher.



Other molecules

The electronic ground state of Hy (two electrons) has zero electronic

Ground orbital angular momentum (L, = 0), has zero electron spin (S, = 0), is
term symmetric under reflection through the center of mass (g), and is
1 1y symmetric under reflection through planes containing the nuclei (+). The
2 5 J ground state is X'Z¥.
CH 111 /2.3/2 §
CHT Iy ,
OH 2H3/20 Lo CO has two (2) p electrons contrﬂ?uted by C and four (4) p electrons
CN 25 ik contributed by O; together these six (6) p electrons fill the 2p subshell,
1/2 and as a result, the ground electronic state of CO has zero electronic
CO ! EBL angular momentum and zero electronic spin: 123 , just like H».
S10 1 E(—)F
CS Iyt OH is an example of a molecule with the ground electronic state having
nonzero electronic orbital angular momentum: with seven electrons, the
hay:1st T OH ground state has L,, = 1 and §,, = 1/2, and is therefore designated
. C(6): 15%25°2p? by 2H1 12.3/2- The electron spin and orbital angular momenta can couple
N(7): 15°25°2p> to give J, = 1/2 or 3/2, with energies that are separated due to spin-orbit
0(8): 1572572p" : coupling (i.e., fine-structure splitting in atoms or ions); the J, = 3/2 state

At 122 672202
53'(11;)):' 11;222;222 5 633SS233 lf 4 has the lower energy.
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[Pure rotational & ro-vibrational transitions]

 Energy Levels

An electronic transition consists of vibrational bands, which in turn are made up of rotational
transitions.

1
E,(v,J) = V,(ro) + hvg (v + 5) + B,J(J +1)

_Wo B h2
Vo = 5 v

= — I = urj =moment of inertia of the molecule.
2T 21

Here, g denotes an electronic state.

e Pure rotational spectrum: In the lowest vibrational and electronic states, it is possible to have
transitions solely among the rotational states. Such transitions give rise to a pure rotational
spectrum.

e Rotational-vibration spectrum: Because the energies required to excite vibrational modes are
much larger than those required to excite rotation, it 1s unlikely to have a pure vibrational
spectrum 1n analogy to the pure rotational spectrum. The transitions then yield a rotation-
vibrational spectrum, in which both the vibrational state and the rotational state can change
together.
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0.541eV T 2 C O
5.036 T+ 3
x1073eV
0.324eV T+ 1
2.518 + 2
0.839 + 1
AE =0+ J =0
E =0.108eV + v=20

The rotational and vibrational energy levels for CO. The left side show the vibrational energy
for each level v. The rotational transitions are illustrated by the gray shading at each level. The
rotational energies are about 100 times smaller than the vibrational and the inset on the right
hand side shows a zoomed-in region of the J-ladder.

[J. Williams, Introduction to the interstellar medium]
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[Selection Rules]

» Electric-dipole selection rules for electronic transitions in a diatomic molecule.

(1) AL=0,41, eg, ¥-%, II-% A 1L etc. e AA=0,+leg, -3, T -3, A—TI,etc.
(2) AS = ¢« AS=0

(3) AJ, =0, +1 ¢ AQ=0, +1

(4) 2t —2F, ¥~ — %7, but not 2t — %~ e Xt —ZH, X7 - X7, butnot T — X7

(5) g +—u TEowu

* Electric-dipole selection rule for ro-virational transitions:

Av = any
AJ=0, £1 not J=0+0

* Note that H> has no permanent electric-dipole moment.

The electric-quadrupole are allowed for

AJ = £2 within the ground electronic state.




O, P, Q, R, and S transitions

* The rotational levels of diatomic molecules are specified by a single vibrational quantum
number v and rotational quantum number J.

- 'Transitions will change J by either 0, = 1, + 2.

- It 1s customary to identify transitions by specifying the upper and lower electronic states,
upper and lower vibrational states, and one of the follows: O(.J,), P(J,), Q(Jy), R(J;), S(Jy)

- The usage of the symbols are shown in the following table. Do not be confused with |

Ju - JE gelectronic transitions.

Designation (J, —J¢) Note

O(Jy) —2  Electric quadrupole transition

P(Jy) —1  Electric dipole transition

Q(Jr) 0 Electric dipole or electric quadrupole; QQ(0) is forbidden
R(Jr) +1  Electric dipole transition

S(Je) +2  Electric quadrupole transition

- For instance, a transition from the the v, = 0, J, = 1 level of the ground electronic state to
the v, =5, J, = 2 level of the first electronic excited state would be written to be

B-X 5-0 R(1)
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P(4) |PG3) |PQ)

P(1)

v, |RO) [RQ)

R(2)

R(3)

Frequency

—.*

[Kwok] Physics and Chemistry of the ISM

E(cm™).
36117.6 l—
T J=3 Dissociation limit
J=8
8000 —
— T J=11
2-0.5(0) 4.695 um
1.189 ym
2-00(2)
1.242 um
2-1 8(0) 5.053 um
2355 um
\
2-1.8(1)
2247 pm
5.511 ym
Y
4000 |- N —
A
6.109 um
1-0 0(2)
2.630 um \
1-0 0(1) 6.910 um
2.407 um ’
1-0 8(1) 8.025 um
2.122 ym ¥
\ 9.665 um
1-0 5(2) \
2.034 ym Y
\ 12.279 um
\ N Y
\ \
\ .
\\\" ‘17.035 um
X\ v [28:219 um
0
v=2 v=1 v=0

—11.0

0.5
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0.0
4.50

R branch

umllHHH

455  4.60

L

P branch

lJ Hum,‘

4.80

Model spectrum of ro-vibrational lines
for COv = 1 — 0, illustrating the two
branches corresponding to a positive or

negative change in J and a central gap at
AJ = 0.

The R branch corresponds to a higher
energy jump,J — J — 1, and lies at
shorter wavelengths. The P branch is a
smaller energy jump,J — J+ 1, and is at
longer wavelengths.

The envelope shape arises from the
population level distribution that 1s small
at low levels due to the degeneracy,

g; = 2J + 1, and at high levels due to the
Boltzmann exponential, e “¥* e The
difference between the relative intensity
of the P and R branches 1s due to different
value of the Einstein A coefficient.



